#!/usr/bin/env python from __future__ import annotations import argparse import pathlib import gradio as gr from model import Model def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') return parser.parse_args() def load_hairstyle_list() -> list[str]: with open('HairCLIP/mapper/hairstyle_list.txt') as f: lines = [line.strip() for line in f.readlines()] lines = [line[:-10] for line in lines] return lines def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def update_step2_components(choice: str) -> tuple[dict, dict]: return ( gr.Dropdown.update(visible=choice in ['hairstyle', 'both']), gr.Textbox.update(visible=choice in ['color', 'both']), ) def main(): args = parse_args() model = Model(device=args.device) css = ''' h1#title { text-align: center; } img#teaser { max-width: 1000px; max-height: 600px; } ''' with gr.Blocks(theme=args.theme, css=css) as demo: gr.Markdown('''

HairCLIP

This is an unofficial demo for https://github.com/wty-ustc/HairCLIP.
teaser
''') with gr.Box(): gr.Markdown('## Step 1') with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='file') with gr.Row(): preprocess_button = gr.Button('Preprocess') with gr.Column(): aligned_face = gr.Image(label='Aligned Face', type='pil', interactive=False) with gr.Column(): reconstructed_face = gr.Image(label='Reconstructed Face', type='numpy') latent = gr.Variable() with gr.Row(): paths = sorted(pathlib.Path('images').glob('*.jpg')) example_images = gr.Dataset(components=[input_image], samples=[[path.as_posix()] for path in paths]) with gr.Box(): gr.Markdown('## Step 2') with gr.Row(): with gr.Column(): with gr.Row(): editing_type = gr.Radio(['hairstyle', 'color', 'both'], value='both', type='value', label='Editing Type') with gr.Row(): hairstyles = load_hairstyle_list() hairstyle_index = gr.Dropdown(hairstyles, value='afro', type='index', label='Hairstyle') with gr.Row(): color_description = gr.Textbox(value='red', label='Color') with gr.Row(): run_button = gr.Button('Run') with gr.Column(): result = gr.Image(label='Result') gr.Markdown( '
visitor badge
' ) preprocess_button.click(fn=model.detect_and_align_face, inputs=[input_image], outputs=[aligned_face]) aligned_face.change(fn=model.reconstruct_face, inputs=[aligned_face], outputs=[reconstructed_face, latent]) editing_type.change(fn=update_step2_components, inputs=[editing_type], outputs=[hairstyle_index, color_description]) run_button.click(fn=model.generate, inputs=[ editing_type, hairstyle_index, color_description, latent, ], outputs=[result]) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()