geyongtao commited on
Commit
eb71923
1 Parent(s): a753634

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
3
+ from diffusers.utils import load_image
4
+ from PIL import Image
5
+ import torch
6
+ import numpy as np
7
+ import cv2
8
+ import gradio as gr
9
+ from torchvision import transforms
10
+
11
+ controlnet = ControlNetModel.from_pretrained(
12
+ "geyongtao/HumanWild",
13
+ torch_dtype=torch.float16
14
+ ).to('cuda')
15
+
16
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
17
+ "stabilityai/stable-diffusion-xl-base-1.0",
18
+ controlnet=controlnet,
19
+ torch_dtype=torch.float16,
20
+ device_map='auto',
21
+ low_cpu_mem_usage=True,
22
+ offload_state_dict=True,
23
+ ).to('cuda')
24
+
25
+ pipe.scheduler = EulerAncestralDiscreteScheduler(
26
+ beta_start=0.00085,
27
+ beta_end=0.012,
28
+ beta_schedule="scaled_linear",
29
+ num_train_timesteps=1000,
30
+ steps_offset=1
31
+ )
32
+ # pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
33
+ # pipe.enable_xformers_memory_efficient_attention()
34
+ pipe.force_zeros_for_empty_prompt = False
35
+
36
+ # from transformers import DPTFeatureExtractor, DPTForDepthEstimation
37
+ # depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
38
+ # feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
39
+
40
+ def resize_image(image):
41
+ image = image.convert('RGB')
42
+ current_size = image.size
43
+ if current_size[0] > current_size[1]:
44
+ center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
45
+ else:
46
+ center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
47
+ resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
48
+ return resized_image
49
+
50
+ def get_normal_map(image):
51
+ image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
52
+ with torch.no_grad(), torch.autocast("cuda"):
53
+ depth_map = depth_estimator(image).predicted_depth
54
+ image = transforms.functional.center_crop(image, min(image.shape[-2:]))
55
+ depth_map = torch.nn.functional.interpolate(
56
+ depth_map.unsqueeze(1),
57
+ size=(1024, 1024),
58
+ mode="bicubic",
59
+ align_corners=False,
60
+ )
61
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
62
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
63
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
64
+ image = torch.cat([depth_map] * 3, dim=1)
65
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
66
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
67
+ return image
68
+
69
+
70
+ @spaces.GPU
71
+ def generate_(prompt, negative_prompt, canny_image, num_steps, controlnet_conditioning_scale, seed):
72
+ generator = torch.Generator("cuda").manual_seed(seed)
73
+ images = pipe(
74
+ prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
75
+ generator=generator,
76
+ ).images
77
+ return images
78
+
79
+ @spaces.GPU
80
+ def process(normal_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
81
+ # resize input_image to 1024x1024
82
+ normal_image = resize_image(normal_image)
83
+ # depth_image = get_depth_map(input_image)
84
+ images = generate_(prompt, negative_prompt, normal_image, num_steps, controlnet_conditioning_scale, seed)
85
+
86
+ return [depth_image, images[0]]
87
+
88
+
89
+
90
+ block = gr.Blocks().queue()
91
+
92
+ with block:
93
+ gr.Markdown("## BRIA 2.2 ControlNet Depth")
94
+ gr.HTML('''
95
+ <p style="margin-bottom: 10px; font-size: 94%">
96
+ This is a demo for ControlNet Surface Normal that using
97
+ <a href="https://huggingface.co/geyongtao/HumanWild" target="_blank"> HumanWild model</a> as backbone.
98
+ </p>
99
+ ''')
100
+ with gr.Row():
101
+ with gr.Column():
102
+ input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
103
+ prompt = gr.Textbox(label="Prompt")
104
+ negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
105
+ num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
106
+ controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
107
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
108
+ run_button = gr.Button(value="Run")
109
+
110
+
111
+ with gr.Column():
112
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
113
+ ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
114
+
115
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
116
+
117
+ block.launch(debug = True)