Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import subprocess | |
import signal | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
import gradio as gr | |
import tempfile | |
from huggingface_hub import HfApi, ModelCard, whoami | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from pathlib import Path | |
from textwrap import dedent | |
from apscheduler.schedulers.background import BackgroundScheduler | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
CONVERSION_SCRIPT = "convert_lora_to_gguf.py" | |
def process_model(peft_model_id: str, q_method: str, private_repo, oauth_token: gr.OAuthToken | None): | |
if oauth_token.token is None: | |
raise ValueError("You must be logged in to use GGUF-my-lora") | |
model_name = peft_model_id.split('/')[-1] | |
gguf_output_name = f"{model_name}-{q_method.lower()}.gguf" | |
try: | |
api = HfApi(token=oauth_token.token) | |
dl_pattern = ["*.md", "*.json", "*.model"] | |
pattern = ( | |
"*.safetensors" | |
if any( | |
file.path.endswith(".safetensors") | |
for file in api.list_repo_tree( | |
repo_id=peft_model_id, | |
recursive=True, | |
) | |
) | |
else "*.bin" | |
) | |
dl_pattern += [pattern] | |
if not os.path.exists("downloads"): | |
os.makedirs("downloads") | |
if not os.path.exists("outputs"): | |
os.makedirs("outputs") | |
with tempfile.TemporaryDirectory(dir="outputs") as outputdir: | |
gguf_output_path = Path(outputdir)/gguf_output_name | |
readme_output_path = Path(outputdir)/"README.md" | |
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: | |
# Keep the model name as the dirname so the model name metadata is populated correctly | |
local_dir = Path(tmpdir)/model_name | |
print(local_dir) | |
api.snapshot_download(repo_id=peft_model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
print("Model downloaded successfully!") | |
print(f"Current working directory: {os.getcwd()}") | |
print(f"Model directory contents: {os.listdir(local_dir)}") | |
adapter_config_dir = local_dir/"adapter_config.json" | |
if not os.path.exists(adapter_config_dir): | |
raise Exception('adapter_config.json not found. Please ensure the selected repo is a PEFT LoRA model.<br/><br/>If you are converting a model (not a LoRA adapter), please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-repo" target="_blank" style="text-decoration:underline">GGUF-my-repo</a> instead.') | |
result = subprocess.run([ | |
"python", | |
f"llama.cpp/{CONVERSION_SCRIPT}", | |
local_dir, | |
"--outtype", | |
q_method.lower(), | |
"--outfile", | |
gguf_output_path, | |
], shell=False, capture_output=True) | |
print(result) | |
if result.returncode != 0: | |
raise Exception(f"Error converting to GGUF {q_method}: {result.stderr}") | |
print("Model converted to GGUF successfully!") | |
print(f"Converted model path: {gguf_output_path}") | |
# Create empty repo | |
username = whoami(oauth_token.token)["name"] | |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo) | |
new_repo_id = new_repo_url.repo_id | |
print("Repo created successfully!", new_repo_url) | |
# Upload the GGUF model | |
api.upload_file( | |
path_or_fileobj=gguf_output_path, | |
path_in_repo=gguf_output_name, | |
repo_id=new_repo_id, | |
) | |
print("Uploaded", gguf_output_name) | |
try: | |
card = ModelCard.load(peft_model_id, token=oauth_token.token) | |
except: | |
card = ModelCard("") | |
if card.data.tags is None: | |
card.data.tags = [] | |
card.data.tags.append("llama-cpp") | |
card.data.tags.append("gguf-my-lora") | |
card.data.base_model = peft_model_id | |
card.text = dedent( | |
f""" | |
# {new_repo_id} | |
This LoRA adapter was converted to GGUF format from [`{peft_model_id}`](https://huggingface.co/{peft_model_id}) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. | |
Refer to the [original adapter repository](https://huggingface.co/{peft_model_id}) for more details. | |
## Use with llama.cpp | |
```bash | |
# with cli | |
llama-cli -m base_model.gguf --lora {gguf_output_name} (...other args) | |
# with server | |
llama-server -m base_model.gguf --lora {gguf_output_name} (...other args) | |
``` | |
To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md). | |
""" | |
) | |
card.save(readme_output_path) | |
api.upload_file( | |
path_or_fileobj=readme_output_path, | |
path_in_repo="README.md", | |
repo_id=new_repo_id, | |
) | |
return ( | |
f'<h1>β DONE</h1><br/><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>' | |
) | |
except Exception as e: | |
return (f"<h1>β ERROR</h1><br/><br/>{e}") | |
css="""/* Custom CSS to allow scrolling */ | |
.gradio-container {overflow-y: auto;} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("You must be logged in to use GGUF-my-lora.") | |
gr.LoginButton(min_width=250) | |
peft_model_id = HuggingfaceHubSearch( | |
label="PEFT LoRA repository", | |
placeholder="Search for repository on Huggingface", | |
search_type="model", | |
) | |
q_method = gr.Dropdown( | |
["F32", "F16", "Q8_0"], | |
label="Quantization Method", | |
info="(Note: Quantization less than Q8 produces very poor results)", | |
value="F16", | |
filterable=False, | |
visible=True | |
) | |
private_repo = gr.Checkbox( | |
value=False, | |
label="Private Repo", | |
info="Create a private repo under your username." | |
) | |
iface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
peft_model_id, | |
q_method, | |
private_repo, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
], | |
title="Convert PEFT LoRA adapters to GGUF, blazingly fast β‘!", | |
description="The space takes a PEFT LoRA (stored on a HF repo) as an input, converts it to GGUF and creates a Public repo under your HF user namespace.", | |
api_name=False | |
) | |
def restart_space(): | |
HfApi().restart_space(repo_id="ggml-org/gguf-my-lora", token=HF_TOKEN, factory_reboot=True) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=21600) | |
scheduler.start() | |
# Launch the interface | |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |