Spaces:
Running
on
A10G
Running
on
A10G
Imatrix
Browse files- Dockerfile.bak +0 -63
- app.py.bak +0 -375
- start.sh.bak +0 -5
Dockerfile.bak
DELETED
@@ -1,63 +0,0 @@
|
|
1 |
-
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
|
2 |
-
|
3 |
-
ENV DEBIAN_FRONTEND=noninteractive
|
4 |
-
RUN apt-get update && \
|
5 |
-
apt-get upgrade -y && \
|
6 |
-
apt-get install -y --no-install-recommends \
|
7 |
-
git \
|
8 |
-
git-lfs \
|
9 |
-
wget \
|
10 |
-
curl \
|
11 |
-
# python build dependencies \
|
12 |
-
build-essential \
|
13 |
-
libssl-dev \
|
14 |
-
zlib1g-dev \
|
15 |
-
libbz2-dev \
|
16 |
-
libreadline-dev \
|
17 |
-
libsqlite3-dev \
|
18 |
-
libncursesw5-dev \
|
19 |
-
xz-utils \
|
20 |
-
tk-dev \
|
21 |
-
libxml2-dev \
|
22 |
-
libxmlsec1-dev \
|
23 |
-
libffi-dev \
|
24 |
-
liblzma-dev \
|
25 |
-
ffmpeg \
|
26 |
-
nvidia-driver-515
|
27 |
-
|
28 |
-
RUN useradd -m -u 1000 user
|
29 |
-
USER user
|
30 |
-
ENV HOME=/home/user \
|
31 |
-
PATH=/home/user/.local/bin:${PATH}
|
32 |
-
WORKDIR ${HOME}/app
|
33 |
-
|
34 |
-
RUN curl https://pyenv.run | bash
|
35 |
-
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
36 |
-
ARG PYTHON_VERSION=3.10.13
|
37 |
-
RUN pyenv install ${PYTHON_VERSION} && \
|
38 |
-
pyenv global ${PYTHON_VERSION} && \
|
39 |
-
pyenv rehash && \
|
40 |
-
pip install --no-cache-dir -U pip setuptools wheel && \
|
41 |
-
pip install "huggingface-hub" "hf-transfer" "gradio[oauth]>=4.28.0" "gradio_huggingfacehub_search==0.0.7" "APScheduler"
|
42 |
-
|
43 |
-
COPY --chown=1000 . ${HOME}/app
|
44 |
-
RUN git clone https://github.com/ggerganov/llama.cpp
|
45 |
-
RUN pip install -r llama.cpp/requirements.txt
|
46 |
-
|
47 |
-
COPY imatrix_calibration.txt ${HOME}/app/llama.cpp/
|
48 |
-
|
49 |
-
ENV PYTHONPATH=${HOME}/app \
|
50 |
-
PYTHONUNBUFFERED=1 \
|
51 |
-
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
52 |
-
GRADIO_ALLOW_FLAGGING=never \
|
53 |
-
GRADIO_NUM_PORTS=1 \
|
54 |
-
GRADIO_SERVER_NAME=0.0.0.0 \
|
55 |
-
GRADIO_THEME=huggingface \
|
56 |
-
TQDM_POSITION=-1 \
|
57 |
-
TQDM_MININTERVAL=1 \
|
58 |
-
SYSTEM=spaces \
|
59 |
-
LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH} \
|
60 |
-
PATH=/usr/local/nvidia/bin:${PATH}
|
61 |
-
|
62 |
-
|
63 |
-
ENTRYPOINT ["/bin/bash", "-c", "cd llama.cpp && LLAMA_CUDA=1 make -j && cd .. && /bin/sh start.sh"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py.bak
DELETED
@@ -1,375 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import subprocess
|
4 |
-
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
5 |
-
import gradio as gr
|
6 |
-
|
7 |
-
from huggingface_hub import create_repo, HfApi
|
8 |
-
from huggingface_hub import snapshot_download
|
9 |
-
from huggingface_hub import whoami
|
10 |
-
from huggingface_hub import ModelCard
|
11 |
-
|
12 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
13 |
-
|
14 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
15 |
-
|
16 |
-
from textwrap import dedent
|
17 |
-
|
18 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
19 |
-
|
20 |
-
def generate_importance_matrix(model_path, train_data_path):
|
21 |
-
imatrix_command = f"./imatrix -m ../{model_path} -f {train_data_path} -ngl 99"
|
22 |
-
|
23 |
-
os.chdir("llama.cpp")
|
24 |
-
|
25 |
-
compile_command = "LLAMA_CUDA=1 make -j"
|
26 |
-
compile_result = subprocess.run(compile_command, shell=True, capture_output=True, text=True)
|
27 |
-
if compile_result.returncode != 0:
|
28 |
-
raise Exception(f"Error compiling imatrix: {compile_result.stderr}")
|
29 |
-
|
30 |
-
|
31 |
-
print(f"Current working directory: {os.getcwd()}")
|
32 |
-
print(f"Files in the current directory: {os.listdir('.')}")
|
33 |
-
|
34 |
-
if not os.path.isfile(f"../{model_path}"):
|
35 |
-
raise Exception(f"Model file not found: {model_path}")
|
36 |
-
|
37 |
-
print("Running imatrix command...")
|
38 |
-
result = subprocess.run(imatrix_command, shell=True, capture_output=True, text=True)
|
39 |
-
|
40 |
-
os.chdir("..")
|
41 |
-
|
42 |
-
if result.returncode != 0:
|
43 |
-
raise Exception(f"Error generating importance matrix: {result.stderr}")
|
44 |
-
print("Importance matrix generated successfully!")
|
45 |
-
|
46 |
-
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
47 |
-
if oauth_token.token is None:
|
48 |
-
raise ValueError("You have to be logged in.")
|
49 |
-
|
50 |
-
split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}"
|
51 |
-
if split_max_size:
|
52 |
-
split_cmd += f" --split-max-size {split_max_size}"
|
53 |
-
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
54 |
-
|
55 |
-
print(f"Split command: {split_cmd}")
|
56 |
-
|
57 |
-
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
58 |
-
print(f"Split command stdout: {result.stdout}")
|
59 |
-
print(f"Split command stderr: {result.stderr}")
|
60 |
-
|
61 |
-
if result.returncode != 0:
|
62 |
-
raise Exception(f"Error splitting the model: {result.stderr}")
|
63 |
-
print("Model split successfully!")
|
64 |
-
|
65 |
-
|
66 |
-
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
67 |
-
if sharded_model_files:
|
68 |
-
print(f"Sharded model files: {sharded_model_files}")
|
69 |
-
api = HfApi(token=oauth_token.token)
|
70 |
-
for file in sharded_model_files:
|
71 |
-
file_path = os.path.join('.', file)
|
72 |
-
print(f"Uploading file: {file_path}")
|
73 |
-
try:
|
74 |
-
api.upload_file(
|
75 |
-
path_or_fileobj=file_path,
|
76 |
-
path_in_repo=file,
|
77 |
-
repo_id=repo_id,
|
78 |
-
)
|
79 |
-
except Exception as e:
|
80 |
-
raise Exception(f"Error uploading file {file_path}: {e}")
|
81 |
-
else:
|
82 |
-
raise Exception("No sharded files found.")
|
83 |
-
|
84 |
-
print("Sharded model has been uploaded successfully!")
|
85 |
-
|
86 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
87 |
-
if oauth_token.token is None:
|
88 |
-
raise ValueError("You must be logged in to use GGUF-my-repo")
|
89 |
-
model_name = model_id.split('/')[-1]
|
90 |
-
fp16 = f"{model_name}.fp16.gguf"
|
91 |
-
|
92 |
-
try:
|
93 |
-
api = HfApi(token=oauth_token.token)
|
94 |
-
|
95 |
-
dl_pattern = ["*.md", "*.json", "*.model"]
|
96 |
-
|
97 |
-
pattern = (
|
98 |
-
"*.safetensors"
|
99 |
-
if any(
|
100 |
-
file.path.endswith(".safetensors")
|
101 |
-
for file in api.list_repo_tree(
|
102 |
-
repo_id=model_id,
|
103 |
-
recursive=True,
|
104 |
-
)
|
105 |
-
)
|
106 |
-
else "*.bin"
|
107 |
-
)
|
108 |
-
|
109 |
-
dl_pattern += pattern
|
110 |
-
|
111 |
-
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
112 |
-
print("Model downloaded successfully!")
|
113 |
-
print(f"Current working directory: {os.getcwd()}")
|
114 |
-
print(f"Model directory contents: {os.listdir(model_name)}")
|
115 |
-
|
116 |
-
conversion_script = "convert-hf-to-gguf.py"
|
117 |
-
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
118 |
-
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
119 |
-
print(result)
|
120 |
-
if result.returncode != 0:
|
121 |
-
raise Exception(f"Error converting to fp16: {result.stderr}")
|
122 |
-
print("Model converted to fp16 successfully!")
|
123 |
-
print(f"Converted model path: {fp16}")
|
124 |
-
|
125 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
126 |
-
|
127 |
-
if use_imatrix:
|
128 |
-
if train_data_file:
|
129 |
-
train_data_path = train_data_file.name
|
130 |
-
else:
|
131 |
-
train_data_path = "imatrix_calibration.txt"
|
132 |
-
|
133 |
-
print(f"Training data file path: {train_data_path}")
|
134 |
-
|
135 |
-
if not os.path.isfile(train_data_path):
|
136 |
-
raise Exception(f"Training data file not found: {train_data_path}")
|
137 |
-
|
138 |
-
generate_importance_matrix(fp16, train_data_path)
|
139 |
-
else:
|
140 |
-
print("Not using imatrix quantization.")
|
141 |
-
username = whoami(oauth_token.token)["name"]
|
142 |
-
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
143 |
-
quantized_gguf_path = quantized_gguf_name
|
144 |
-
if use_imatrix:
|
145 |
-
quantise_ggml = f"./llama.cpp/quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
146 |
-
else:
|
147 |
-
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
148 |
-
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
149 |
-
if result.returncode != 0:
|
150 |
-
raise Exception(f"Error quantizing: {result.stderr}")
|
151 |
-
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
152 |
-
print(f"Quantized model path: {quantized_gguf_path}")
|
153 |
-
|
154 |
-
# Create empty repo
|
155 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
156 |
-
new_repo_id = new_repo_url.repo_id
|
157 |
-
print("Repo created successfully!", new_repo_url)
|
158 |
-
|
159 |
-
try:
|
160 |
-
card = ModelCard.load(model_id, token=oauth_token.token)
|
161 |
-
except:
|
162 |
-
card = ModelCard("")
|
163 |
-
if card.data.tags is None:
|
164 |
-
card.data.tags = []
|
165 |
-
card.data.tags.append("llama-cpp")
|
166 |
-
card.data.tags.append("gguf-my-repo")
|
167 |
-
card.data.base_model = model_id
|
168 |
-
card.text = dedent(
|
169 |
-
f"""
|
170 |
-
# {new_repo_id}
|
171 |
-
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
172 |
-
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
173 |
-
|
174 |
-
## Use with llama.cpp
|
175 |
-
Install llama.cpp through brew (works on Mac and Linux)
|
176 |
-
|
177 |
-
```bash
|
178 |
-
brew install llama.cpp
|
179 |
-
|
180 |
-
```
|
181 |
-
Invoke the llama.cpp server or the CLI.
|
182 |
-
|
183 |
-
### CLI:
|
184 |
-
```bash
|
185 |
-
llama --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
186 |
-
```
|
187 |
-
|
188 |
-
### Server:
|
189 |
-
```bash
|
190 |
-
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
191 |
-
```
|
192 |
-
|
193 |
-
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
194 |
-
|
195 |
-
Step 1: Clone llama.cpp from GitHub.
|
196 |
-
```
|
197 |
-
git clone https://github.com/ggerganov/llama.cpp
|
198 |
-
```
|
199 |
-
|
200 |
-
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
201 |
-
```
|
202 |
-
cd llama.cpp && LLAMA_CURL=1 make
|
203 |
-
```
|
204 |
-
|
205 |
-
Step 3: Run inference through the main binary.
|
206 |
-
```
|
207 |
-
./main --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
208 |
-
```
|
209 |
-
or
|
210 |
-
```
|
211 |
-
./server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
212 |
-
```
|
213 |
-
"""
|
214 |
-
)
|
215 |
-
card.save(f"README.md")
|
216 |
-
|
217 |
-
if split_model:
|
218 |
-
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
219 |
-
else:
|
220 |
-
try:
|
221 |
-
print(f"Uploading quantized model: {quantized_gguf_path}")
|
222 |
-
api.upload_file(
|
223 |
-
path_or_fileobj=quantized_gguf_path,
|
224 |
-
path_in_repo=quantized_gguf_name,
|
225 |
-
repo_id=new_repo_id,
|
226 |
-
)
|
227 |
-
except Exception as e:
|
228 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
229 |
-
|
230 |
-
|
231 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
232 |
-
if os.path.isfile(imatrix_path):
|
233 |
-
try:
|
234 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
235 |
-
api.upload_file(
|
236 |
-
path_or_fileobj=imatrix_path,
|
237 |
-
path_in_repo="imatrix.dat",
|
238 |
-
repo_id=new_repo_id,
|
239 |
-
)
|
240 |
-
except Exception as e:
|
241 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
242 |
-
|
243 |
-
api.upload_file(
|
244 |
-
path_or_fileobj=f"README.md",
|
245 |
-
path_in_repo=f"README.md",
|
246 |
-
repo_id=new_repo_id,
|
247 |
-
)
|
248 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
249 |
-
|
250 |
-
return (
|
251 |
-
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
252 |
-
"llama.png",
|
253 |
-
)
|
254 |
-
except Exception as e:
|
255 |
-
return (f"Error: {e}", "error.png")
|
256 |
-
finally:
|
257 |
-
shutil.rmtree(model_name, ignore_errors=True)
|
258 |
-
print("Folder cleaned up successfully!")
|
259 |
-
|
260 |
-
|
261 |
-
# Create Gradio interface
|
262 |
-
with gr.Blocks(css=".gradio-container {max-height: 600px; overflow-y: auto;}") as demo:
|
263 |
-
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
264 |
-
gr.LoginButton(min_width=250)
|
265 |
-
|
266 |
-
model_id = HuggingfaceHubSearch(
|
267 |
-
label="Hub Model ID",
|
268 |
-
placeholder="Search for model id on Huggingface",
|
269 |
-
search_type="model",
|
270 |
-
)
|
271 |
-
|
272 |
-
q_method = gr.Dropdown(
|
273 |
-
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
274 |
-
label="Quantization Method",
|
275 |
-
info="GGML quantization type",
|
276 |
-
value="Q4_K_M",
|
277 |
-
filterable=False,
|
278 |
-
visible=True
|
279 |
-
)
|
280 |
-
|
281 |
-
imatrix_q_method = gr.Dropdown(
|
282 |
-
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
283 |
-
label="Imatrix Quantization Method",
|
284 |
-
info="GGML imatrix quants type",
|
285 |
-
value="IQ4_NL",
|
286 |
-
filterable=False,
|
287 |
-
visible=False
|
288 |
-
)
|
289 |
-
|
290 |
-
use_imatrix = gr.Checkbox(
|
291 |
-
value=False,
|
292 |
-
label="Use Imatrix Quantization",
|
293 |
-
info="Use importance matrix for quantization."
|
294 |
-
)
|
295 |
-
|
296 |
-
private_repo = gr.Checkbox(
|
297 |
-
value=False,
|
298 |
-
label="Private Repo",
|
299 |
-
info="Create a private repo under your username."
|
300 |
-
)
|
301 |
-
|
302 |
-
train_data_file = gr.File(
|
303 |
-
label="Training Data File",
|
304 |
-
file_types=["txt"],
|
305 |
-
visible=False
|
306 |
-
)
|
307 |
-
|
308 |
-
split_model = gr.Checkbox(
|
309 |
-
value=False,
|
310 |
-
label="Split Model",
|
311 |
-
info="Shard the model using gguf-split."
|
312 |
-
)
|
313 |
-
|
314 |
-
split_max_tensors = gr.Number(
|
315 |
-
value=256,
|
316 |
-
label="Max Tensors per File",
|
317 |
-
info="Maximum number of tensors per file when splitting model.",
|
318 |
-
visible=False
|
319 |
-
)
|
320 |
-
|
321 |
-
split_max_size = gr.Textbox(
|
322 |
-
label="Max File Size",
|
323 |
-
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
324 |
-
visible=False
|
325 |
-
)
|
326 |
-
|
327 |
-
def update_visibility(use_imatrix):
|
328 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
329 |
-
|
330 |
-
use_imatrix.change(
|
331 |
-
fn=update_visibility,
|
332 |
-
inputs=use_imatrix,
|
333 |
-
outputs=[q_method, imatrix_q_method, train_data_file]
|
334 |
-
)
|
335 |
-
|
336 |
-
iface = gr.Interface(
|
337 |
-
fn=process_model,
|
338 |
-
inputs=[
|
339 |
-
model_id,
|
340 |
-
q_method,
|
341 |
-
use_imatrix,
|
342 |
-
imatrix_q_method,
|
343 |
-
private_repo,
|
344 |
-
train_data_file,
|
345 |
-
split_model,
|
346 |
-
split_max_tensors,
|
347 |
-
split_max_size,
|
348 |
-
],
|
349 |
-
outputs=[
|
350 |
-
gr.Markdown(label="output"),
|
351 |
-
gr.Image(show_label=False),
|
352 |
-
],
|
353 |
-
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
354 |
-
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
355 |
-
api_name=False
|
356 |
-
)
|
357 |
-
|
358 |
-
def update_split_visibility(split_model):
|
359 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
360 |
-
|
361 |
-
split_model.change(
|
362 |
-
fn=update_split_visibility,
|
363 |
-
inputs=split_model,
|
364 |
-
outputs=[split_max_tensors, split_max_size]
|
365 |
-
)
|
366 |
-
|
367 |
-
def restart_space():
|
368 |
-
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
369 |
-
|
370 |
-
scheduler = BackgroundScheduler()
|
371 |
-
scheduler.add_job(restart_space, "interval", seconds=21600)
|
372 |
-
scheduler.start()
|
373 |
-
|
374 |
-
# Launch the interface
|
375 |
-
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start.sh.bak
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
cd llama.cpp
|
2 |
-
make -j quantize gguf-split imatrix
|
3 |
-
|
4 |
-
cd ..
|
5 |
-
python app.py
|
|
|
|
|
|
|
|
|
|
|
|