import os import subprocess import signal os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr import tempfile from huggingface_hub import HfApi, ModelCard, whoami from gradio_huggingfacehub_search import HuggingfaceHubSearch from pathlib import Path from textwrap import dedent from apscheduler.schedulers.background import BackgroundScheduler # used for restarting the space HF_TOKEN = os.environ.get("HF_TOKEN") CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" # escape HTML for logging def escape(s: str) -> str: s = s.replace("&", "&") # Must be done first! s = s.replace("<", "<") s = s.replace(">", ">") s = s.replace('"', """) s = s.replace("\n", "
") return s def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): imatrix_command = [ "./llama.cpp/llama-imatrix", "-m", model_path, "-f", train_data_path, "-ngl", "99", "--output-frequency", "10", "-o", output_path, ] if not os.path.isfile(model_path): raise Exception(f"Model file not found: {model_path}") print("Running imatrix command...") process = subprocess.Popen(imatrix_command, shell=False) try: process.wait(timeout=60) # added wait except subprocess.TimeoutExpired: print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") process.send_signal(signal.SIGINT) try: process.wait(timeout=5) # grace period except subprocess.TimeoutExpired: print("Imatrix proc still didn't term. Forecfully terming process...") process.kill() print("Importance matrix generation completed.") def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None): print(f"Model path: {model_path}") print(f"Output dir: {outdir}") if oauth_token.token is None: raise ValueError("You have to be logged in.") split_cmd = [ "./llama.cpp/llama-gguf-split", "--split", ] if split_max_size: split_cmd.append("--split-max-size") split_cmd.append(split_max_size) else: split_cmd.append("--split-max-tensors") split_cmd.append(str(split_max_tensors)) # args for output model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension split_cmd.append(model_path) split_cmd.append(model_path_prefix) print(f"Split command: {split_cmd}") result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) print(f"Split command stdout: {result.stdout}") print(f"Split command stderr: {result.stderr}") if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error splitting the model: {stderr_str}") print("Model split successfully!") # remove the original model file if needed if os.path.exists(model_path): os.remove(model_path) model_file_prefix = model_path_prefix.split('/')[-1] print(f"Model file name prefix: {model_file_prefix}") sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] if sharded_model_files: print(f"Sharded model files: {sharded_model_files}") api = HfApi(token=oauth_token.token) for file in sharded_model_files: file_path = os.path.join(outdir, file) print(f"Uploading file: {file_path}") try: api.upload_file( path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id, ) except Exception as e: raise Exception(f"Error uploading file {file_path}: {e}") else: raise Exception("No sharded files found.") print("Sharded model has been uploaded successfully!") def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None): if oauth_token is None or oauth_token.token is None: raise ValueError("You must be logged in to use GGUF-my-repo") model_name = model_id.split('/')[-1] try: api = HfApi(token=oauth_token.token) dl_pattern = ["*.md", "*.json", "*.model"] pattern = ( "*.safetensors" if any( file.path.endswith(".safetensors") for file in api.list_repo_tree( repo_id=model_id, recursive=True, ) ) else "*.bin" ) dl_pattern += [pattern] if not os.path.exists("downloads"): os.makedirs("downloads") if not os.path.exists("outputs"): os.makedirs("outputs") with tempfile.TemporaryDirectory(dir="outputs") as outdir: fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf") with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: # Keep the model name as the dirname so the model name metadata is populated correctly local_dir = Path(tmpdir)/model_name print(local_dir) api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) print("Model downloaded successfully!") print(f"Current working directory: {os.getcwd()}") print(f"Model directory contents: {os.listdir(local_dir)}") config_dir = local_dir/"config.json" adapter_config_dir = local_dir/"adapter_config.json" if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): raise Exception('adapter_config.json is present.

If you are converting a LoRA adapter to GGUF, please use GGUF-my-lora.') result = subprocess.run([ "python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16 ], shell=False, capture_output=True) print(result) if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error converting to fp16: {stderr_str}") print("Model converted to fp16 successfully!") print(f"Converted model path: {fp16}") imatrix_path = Path(outdir)/"imatrix.dat" if use_imatrix: if train_data_file: train_data_path = train_data_file.name else: train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset print(f"Training data file path: {train_data_path}") if not os.path.isfile(train_data_path): raise Exception(f"Training data file not found: {train_data_path}") generate_importance_matrix(fp16, train_data_path, imatrix_path) else: print("Not using imatrix quantization.") # Quantize the model quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf" quantized_gguf_path = str(Path(outdir)/quantized_gguf_name) if use_imatrix: quantise_ggml = [ "./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method ] else: quantise_ggml = [ "./llama.cpp/llama-quantize", fp16, quantized_gguf_path, q_method ] result = subprocess.run(quantise_ggml, shell=False, capture_output=True) if result.returncode != 0: stderr_str = result.stderr.decode("utf-8") raise Exception(f"Error quantizing: {stderr_str}") print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!") print(f"Quantized model path: {quantized_gguf_path}") # Create empty repo username = whoami(oauth_token.token)["name"] new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo) new_repo_id = new_repo_url.repo_id print("Repo created successfully!", new_repo_url) try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") if card.data.tags is None: card.data.tags = [] card.data.tags.append("llama-cpp") card.data.tags.append("gguf-my-repo") card.data.base_model = model_id card.text = dedent( f""" # {new_repo_id} This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 ``` """ ) readme_path = Path(outdir)/"README.md" card.save(readme_path) if split_model: split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size) else: try: print(f"Uploading quantized model: {quantized_gguf_path}") api.upload_file( path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id, ) except Exception as e: raise Exception(f"Error uploading quantized model: {e}") if os.path.isfile(imatrix_path): try: print(f"Uploading imatrix.dat: {imatrix_path}") api.upload_file( path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id, ) except Exception as e: raise Exception(f"Error uploading imatrix.dat: {e}") api.upload_file( path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=new_repo_id, ) print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!") # end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here return ( f'

✅ DONE


Find your repo here: {new_repo_id}', "llama.png", ) except Exception as e: return (f'

❌ ERROR


{escape(str(e))}
', "error.png") css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("You must be logged in to use GGUF-my-repo.") gr.LoginButton(min_width=250) model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) q_method = gr.Dropdown( ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True ) imatrix_q_method = gr.Dropdown( ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False ) use_imatrix = gr.Checkbox( value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization." ) private_repo = gr.Checkbox( value=False, label="Private Repo", info="Create a private repo under your username." ) train_data_file = gr.File( label="Training Data File", file_types=["txt"], visible=False ) split_model = gr.Checkbox( value=False, label="Split Model", info="Shard the model using gguf-split." ) split_max_tensors = gr.Number( value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False ) split_max_size = gr.Textbox( label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", visible=False ) def update_visibility(use_imatrix): return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix) use_imatrix.change( fn=update_visibility, inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file] ) iface = gr.Interface( fn=process_model, inputs=[ model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, ], outputs=[ gr.Markdown(label="output"), gr.Image(show_label=False), ], title="Create your own GGUF Quants, blazingly fast ⚡!", description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", api_name=False ) def update_split_visibility(split_model): return gr.update(visible=split_model), gr.update(visible=split_model) split_model.change( fn=update_split_visibility, inputs=split_model, outputs=[split_max_tensors, split_max_size] ) def restart_space(): HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() # Launch the interface demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)