import cv2 import numpy as np import torch from PIL import Image import mediapipe as mp from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing from app.face_utils import get_box, display_info from app.config import config_data from app.plot import statistics_plot from .au_processing import features_to_au_intensities, au_statistics_plot mp_face_mesh = mp.solutions.face_mesh def preprocess_video_and_predict(video): cap = cv2.VideoCapture(video) w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = np.round(cap.get(cv2.CAP_PROP_FPS)) path_save_video_face = 'result_face.mp4' vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224)) path_save_video_hm = 'result_hm.mp4' vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224)) lstm_features = [] count_frame = 1 count_face = 0 probs = [] frames = [] au_intensities_list = [] last_output = None last_heatmap = None last_au_intensities = None cur_face = None with mp_face_mesh.FaceMesh( max_num_faces=1, refine_landmarks=False, min_detection_confidence=0.5, min_tracking_confidence=0.5) as face_mesh: while cap.isOpened(): _, frame = cap.read() if frame is None: break frame_copy = frame.copy() frame_copy.flags.writeable = False frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) results = face_mesh.process(frame_copy) frame_copy.flags.writeable = True if results.multi_face_landmarks: for fl in results.multi_face_landmarks: startX, startY, endX, endY = get_box(fl, w, h) cur_face = frame_copy[startY:endY, startX: endX] if count_face%config_data.FRAME_DOWNSAMPLING == 0: cur_face_copy = pth_processing(Image.fromarray(cur_face)) with torch.no_grad(): features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy() au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy)) grayscale_cam = cam(input_tensor=cur_face_copy) grayscale_cam = grayscale_cam[0, :] cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA) cur_face_hm = np.float32(cur_face_hm) / 255 heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False) last_heatmap = heatmap last_au_intensities = au_intensities if len(lstm_features) == 0: lstm_features = [features]*10 else: lstm_features = lstm_features[1:] + [features] lstm_f = torch.from_numpy(np.vstack(lstm_features)) lstm_f = torch.unsqueeze(lstm_f, 0) with torch.no_grad(): output = pth_model_dynamic(lstm_f).detach().numpy() last_output = output if count_face == 0: count_face += 1 else: if last_output is not None: output = last_output heatmap = last_heatmap au_intensities = last_au_intensities elif last_output is None: output = np.empty((1, 7)) output[:] = np.nan au_intensities = np.empty(24) au_intensities[:] = np.nan probs.append(output[0]) frames.append(count_frame) au_intensities_list.append(au_intensities) else: if last_output is not None: lstm_features = [] empty = np.empty((7)) empty[:] = np.nan probs.append(empty) frames.append(count_frame) au_intensities_list.append(np.full(24, np.nan)) if cur_face is not None: heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3) cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR) cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA) cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3) vid_writer_face.write(cur_face) vid_writer_hm.write(heatmap_f) count_frame += 1 if count_face != 0: count_face += 1 vid_writer_face.release() vid_writer_hm.release() stat = statistics_plot(frames, probs) au_stat = au_statistics_plot(frames, au_intensities_list) if not stat or not au_stat: return None, None, None, None, None return video, path_save_video_face, path_save_video_hm, stat, au_stat