Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
+
|
4 |
+
# Load RAG components
|
5 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
6 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
|
7 |
+
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
8 |
+
|
9 |
+
# Streamlit UI
|
10 |
+
st.title("RAG-based Q&A")
|
11 |
+
|
12 |
+
query = st.text_input("Enter your question:")
|
13 |
+
|
14 |
+
if st.button("Generate Answer"):
|
15 |
+
if query:
|
16 |
+
# Process the input query and generate a response
|
17 |
+
inputs = tokenizer(query, return_tensors="pt")
|
18 |
+
outputs = rag_model.generate(**inputs)
|
19 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
20 |
+
st.write(f"Answer: {response[0]}")
|
21 |
+
else:
|
22 |
+
st.write("Please enter a question to get an answer.")
|