import streamlit as st import requests import os # Hugging Face API details API_URL = "https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill" # Access the secret API key stored as 'rag' api_key = os.getenv('rag') headers = {"Authorization": f"Bearer {api_key}"} # Function to query the model def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() # Streamlit UI for Mental Health Chatbot st.title("Mental Health Chatbot") st.write(""" This chatbot provides responses to mental health-related queries. Please note that this is an AI-based tool and is not a substitute for professional mental health support. """) # User input user_input = st.text_input("How can I help you today?") if st.button("Get Response"): if user_input: # Query the model output = query({"inputs": user_input}) # Print the entire output for debugging purposes st.write("**API Response:**", output) # Check the structure of the response and adjust this line accordingly if 'generated_text' in output: st.write(f"**Response:** {output['generated_text']}") elif isinstance(output, list) and len(output) > 0: st.write(f"**Response:** {output[0].get('generated_text', 'No response available.')}") else: st.write("**Response:** Unable to retrieve a valid response.") else: st.write("Please enter a query to get a response.")