import streamlit as st from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration # Load RAG components tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True) rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) # Streamlit UI st.title("RAG-based Q&A") query = st.text_input("Enter your question:") if st.button("Generate Answer"): if query: # Process the input query and generate a response inputs = tokenizer(query, return_tensors="pt") outputs = rag_model.generate(**inputs) response = tokenizer.batch_decode(outputs, skip_special_tokens=True) st.write(f"Answer: {response[0]}") else: st.write("Please enter a question to get an answer.")