word_graph_viz / app.py
gigant's picture
Update app.py
cbf619d verified
import os
os.system("pip install networkx")
os.system("pip install Cython")
os.system("pip install benepar")
import networkx as nx
import matplotlib.pyplot as plt
import jraph
import jax.numpy as jnp
from datasets import load_dataset
import spacy
import gradio as gr
import en_core_web_trf
import numpy as np
import benepar
import re
dataset = load_dataset("gigant/tib_transcripts")
nlp = en_core_web_trf.load()
benepar.download('benepar_en3')
nlp.add_pipe('benepar', config={'model': 'benepar_en3'})
def parse_tree(sentence):
stack = [] # or a `collections.deque()` object, which is a little faster
top = items = []
for token in filter(None, re.compile(r'(?:([()])|\s+)').split(sentence)):
if token == '(':
stack.append(items)
items.append([])
items = items[-1]
elif token == ')':
if not stack:
raise ValueError("Unbalanced parentheses")
items = stack.pop()
else:
items.append(token)
if stack:
raise ValueError("Unbalanced parentheses")
return top
class Tree():
def __init__(self, name, children):
self.children = children
self.name = name
self.id = None
def set_id_rec(self, id=0):
self.id = id
last_id=id
for child in self.children:
last_id = child.set_id_rec(id=last_id+1)
return last_id
def set_all_ids(self):
self.set_id_rec(0)
def print_tree(self, level=0):
to_print = f'|{"-" * level} {self.name} ({self.id})'
for child in self.children:
to_print += f"\n{child.print_tree(level + 1)}"
return to_print
def __str__(self):
return self.print_tree(0)
def get_list_nodes(self):
return [self.name] + [_ for child in self.children for _ in child.get_list_nodes()]
def rec_const_parsing(list_nodes):
if isinstance(list_nodes, list):
name, children = list_nodes[0], list_nodes[1:]
else:
name, children = list_nodes, []
return Tree(name, [rec_const_parsing(child) for i, child in enumerate(children)])
def tree_to_graph(t):
senders = []
receivers = []
for child in t.children:
senders.append(t.id)
receivers.append(child.id)
s_rec, r_rec = tree_to_graph(child)
senders.extend(s_rec)
receivers.extend(r_rec)
return senders, receivers
def construct_constituency_graph(docs):
doc = docs[0]
sent = list(doc.sents)[0]
print(sent._.parse_string)
t = rec_const_parsing(parse_tree(sent._.parse_string)[0])
t.set_all_ids()
senders, receivers = tree_to_graph(t)
nodes = t.get_list_nodes()
graphs = [{"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": {}}]
return graphs
def half_circle_layout(n_nodes, sentence_node=True):
pos = {}
for i_node in range(n_nodes - 1):
pos[i_node] = ((- np.cos(i_node * np.pi/(n_nodes - 1))), 0.5 * (-np.sin(i_node * np.pi/(n_nodes - 1))))
pos[n_nodes - 1] = (0, -0.25)
return pos
def get_adjacency_matrix(jraph_graph: jraph.GraphsTuple):
nodes, edges, receivers, senders, _, _, _ = jraph_graph
adj_mat = jnp.zeros((len(nodes), len(nodes)))
for i in range(len(receivers)):
adj_mat = adj_mat.at[senders[i], receivers[i]].set(1)
return adj_mat
def dependency_parser(sentences):
return [nlp(sentence) for sentence in sentences]
def construct_dependency_graph(docs):
"""
docs is a list of outputs of the SpaCy dependency parser
"""
graphs = []
for doc in docs:
nodes = [token.text for token in doc]
senders = []
receivers = []
edge_labels = {}
for token in doc:
for child in token.children:
senders.append(child.i)
receivers.append(token.i)
edge_labels[(token.i, child.i)] = child.dep_
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": edge_labels})
return graphs
def construct_both_graph(docs):
"""
docs is a list of outputs of the SpaCy dependency parser
"""
graphs = []
for doc in docs:
nodes = [token.text for token in doc]
nodes.append("Sentence")
senders = [token.i for token in doc][:-1]
senders.extend([token.i for token in doc][1:])
receivers = [token.i for token in doc][1:]
receivers.extend([token.i for token in doc][:-1])
edge_labels = {(token.i, token.i + 1): "next" for token in doc[:-1]}
for token in doc[:-1]:
edge_labels[(token.i + 1, token.i)] = "previous"
for node in range(len(nodes) - 1):
senders.append(node)
receivers.append(len(nodes) - 1)
edge_labels[(node, len(nodes) - 1)] = "in"
for token in doc:
for child in token.children:
senders.append(child.i)
receivers.append(token.i)
edge_labels[(token.i, child.i)] = child.dep_
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": edge_labels})
return graphs
def construct_structural_graph(docs):
graphs = []
for doc in docs:
nodes = [token.text for token in doc]
nodes.append("Sentence")
senders = [token.i for token in doc][:-1]
senders.extend([token.i for token in doc][1:])
receivers = [token.i for token in doc][1:]
receivers.extend([token.i for token in doc][:-1])
edge_labels = {(token.i, token.i + 1): "next" for token in doc[:-1]}
for token in doc[:-1]:
edge_labels[(token.i + 1, token.i)] = "previous"
for node in range(len(nodes) - 1):
senders.append(node)
receivers.append(len(nodes) - 1)
edge_labels[(node, len(nodes) - 1)] = "in"
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": edge_labels})
return graphs
def to_jraph(graph):
nodes = graph["nodes"]
s = graph["senders"]
r = graph["receivers"]
# Define a three node graph, each node has an integer as its feature.
node_features = jnp.array([0]*len(nodes))
# We will construct a graph for which there is a directed edge between each node
# and its successor. We define this with `senders` (source nodes) and `receivers`
# (destination nodes).
senders = jnp.array(s)
receivers = jnp.array(r)
# We then save the number of nodes and the number of edges.
# This information is used to make running GNNs over multiple graphs
# in a GraphsTuple possible.
n_node = jnp.array([len(nodes)])
n_edge = jnp.array([len(s)])
return jraph.GraphsTuple(nodes=node_features, senders=senders, receivers=receivers,
edges=None, n_node=n_node, n_edge=n_edge, globals=None)
def convert_jraph_to_networkx_graph(jraph_graph: jraph.GraphsTuple) -> nx.Graph:
nodes, edges, receivers, senders, _, _, _ = jraph_graph
nx_graph = nx.DiGraph()
if nodes is None:
for n in range(jraph_graph.n_node[0]):
nx_graph.add_node(n)
else:
for n in range(jraph_graph.n_node[0]):
nx_graph.add_node(n, node_feature=nodes[n])
if edges is None:
for e in range(jraph_graph.n_edge[0]):
nx_graph.add_edge(int(senders[e]), int(receivers[e]))
else:
for e in range(jraph_graph.n_edge[0]):
nx_graph.add_edge(
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
return nx_graph
def plot_graph_sentence(sentence, graph_type="constituency"):
# sentences = dataset["train"][0]["abstract"].split(".")
docs = dependency_parser([sentence])
if graph_type == "dependency":
graphs = construct_dependency_graph(docs)
elif graph_type == "structural":
graphs = construct_structural_graph(docs)
elif graph_type == "structural+dependency":
graphs = construct_both_graph(docs)
elif graph_type == "constituency":
graphs = construct_constituency_graph(docs)
g = to_jraph(graphs[0])
adj_mat = get_adjacency_matrix(g)
nx_graph = convert_jraph_to_networkx_graph(g)
pos = half_circle_layout(len(graphs[0]["nodes"]))
if graph_type == "constituency":
pos = nx.planar_layout(nx_graph)
plot = plt.figure(figsize=(12, 6))
nx.draw(nx_graph, pos=pos,
labels={i: e for i,e in enumerate(graphs[0]["nodes"])},
with_labels = True, edge_color="blue",
# connectionstyle="arc3,rad=0.1",
node_size=1000, font_color='black', node_color="yellow")
nx.draw_networkx_edge_labels(
nx_graph, pos=pos,
edge_labels=graphs[0]["edge_labels"],
font_color='red'
)
adj_mat_plot, ax = plt.subplots(figsize=(6, 6))
ax.matshow(adj_mat)
return [gr.update(value=plot), gr.update(value=adj_mat_plot)]
def get_list_sentences(id):
id = int(min(id, len(dataset["train"]) - 1))
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
with gr.Blocks() as demo:
with gr.Row():
graph_type = gr.Dropdown(label="Graph type", choices=["structural", "dependency", "structural+dependency", "constituency"], value="structural+dependency", interactive = True)
with gr.Tab("From transcript"):
with gr.Row():
with gr.Column():
id = gr.Number(label="Transcript")
with gr.Column(scale=3):
sentence_transcript = gr.Dropdown(label="Sentence", choices = dataset["train"][0]["transcript"].split(".")[1:], interactive = True)
with gr.Tab("Type sentence"):
with gr.Row():
sentence_typed = gr.Textbox(label="Sentence", interactive = True)
with gr.Row():
with gr.Column(scale=2):
plot_graph = gr.Plot(label="Word graph")
with gr.Column():
plot_adj = gr.Plot(label="Word graph adjacency matrix")
id.change(get_list_sentences, id, sentence_transcript)
sentence_transcript.change(plot_graph_sentence, [sentence_transcript, graph_type], [plot_graph, plot_adj])
sentence_typed.change(plot_graph_sentence, [sentence_typed, graph_type], [plot_graph, plot_adj])
demo.launch()