Spaces:
Runtime error
Runtime error
File size: 14,372 Bytes
2f4febc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import torch
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import numpy as np
import sys
import os
from dataclasses import dataclass
from gdf import GDF, EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop
from modules.effnet import EfficientNetEncoder
from modules.stage_a import StageA
from modules.stage_b import StageB
from modules.stage_b import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from train.base import DataCore, TrainingCore
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
class WurstCore(TrainingCore, DataCore, WarpCore):
@dataclass(frozen=True)
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
# TRAINING PARAMS
lr: float = EXPECTED_TRAIN
warmup_updates: int = EXPECTED_TRAIN
shift: float = EXPECTED_TRAIN
dtype: str = None
# MODEL VERSION
model_version: str = EXPECTED # 3BB or 700M
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
# CHECKPOINT PATHS
stage_a_checkpoint_path: str = EXPECTED
effnet_checkpoint_path: str = EXPECTED
generator_checkpoint_path: str = None
# gdf customization
adaptive_loss_weight: str = None
@dataclass(frozen=True)
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
effnet: nn.Module = EXPECTED
stage_a: nn.Module = EXPECTED
@dataclass(frozen=True)
class Schedulers(WarpCore.Schedulers):
generator: any = None
@dataclass(frozen=True)
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
gdf: GDF = EXPECTED
sampling_configs: dict = EXPECTED
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
info: TrainingCore.Info
config: Config
def setup_extras_pre(self) -> Extras:
gdf = GDF(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
)
sampling_configs = {"cfg": 1.5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 10}
if self.info.adaptive_loss is not None:
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(self.config.image_size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True),
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) if self.config.training else torchvision.transforms.CenterCrop(self.config.image_size)
])
return self.Extras(
gdf=gdf,
sampling_configs=sampling_configs,
transforms=transforms,
effnet_preprocess=effnet_preprocess,
clip_preprocess=None
)
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, eval_image_embeds=False, return_fields=None):
images = batch.get('images', None)
if images is not None:
images = images.to(self.device)
if is_eval and not is_unconditional:
effnet_embeddings = models.effnet(extras.effnet_preprocess(images))
else:
if is_eval:
effnet_factor = 1
else:
effnet_factor = np.random.uniform(0.5, 1) # f64 to f32
effnet_height, effnet_width = int(((images.size(-2)*effnet_factor)//32)*32), int(((images.size(-1)*effnet_factor)//32)*32)
effnet_embeddings = torch.zeros(images.size(0), 16, effnet_height//32, effnet_width//32, device=self.device)
if not is_eval:
effnet_images = torchvision.transforms.functional.resize(images, (effnet_height, effnet_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST)
rand_idx = np.random.rand(len(images)) <= 0.9
if any(rand_idx):
effnet_embeddings[rand_idx] = models.effnet(extras.effnet_preprocess(effnet_images[rand_idx]))
else:
effnet_embeddings = None
conditions = super().get_conditions(
batch, models, extras, is_eval, is_unconditional,
eval_image_embeds, return_fields=return_fields or ['clip_text_pooled']
)
return {'effnet': effnet_embeddings, 'clip': conditions['clip_text_pooled']}
def setup_models(self, extras: Extras, skip_clip: bool = False) -> Models:
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32
# EfficientNet encoder
effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
effnet.eval().requires_grad_(False)
del effnet_checkpoint
# vqGAN
stage_a = StageA().to(self.device)
stage_a_checkpoint = load_or_fail(self.config.stage_a_checkpoint_path)
stage_a.load_state_dict(stage_a_checkpoint if 'state_dict' not in stage_a_checkpoint else stage_a_checkpoint['state_dict'])
stage_a.eval().requires_grad_(False)
del stage_a_checkpoint
@contextmanager
def dummy_context():
yield None
loading_context = dummy_context if self.config.training else init_empty_weights
# Diffusion models
with loading_context():
generator_ema = None
if self.config.model_version == '3B':
generator = StageB(c_hidden=[320, 640, 1280, 1280], nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]])
if self.config.ema_start_iters is not None:
generator_ema = StageB(c_hidden=[320, 640, 1280, 1280], nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]])
elif self.config.model_version == '700M':
generator = StageB(c_hidden=[320, 576, 1152, 1152], nhead=[-1, 9, 18, 18], blocks=[[2, 4, 14, 4], [4, 14, 4, 2]], block_repeat=[[1, 1, 1, 1], [2, 2, 2, 2]])
if self.config.ema_start_iters is not None:
generator_ema = StageB(c_hidden=[320, 576, 1152, 1152], nhead=[-1, 9, 18, 18], blocks=[[2, 4, 14, 4], [4, 14, 4, 2]], block_repeat=[[1, 1, 1, 1], [2, 2, 2, 2]])
else:
raise ValueError(f"Unknown model version {self.config.model_version}")
if self.config.generator_checkpoint_path is not None:
if loading_context is dummy_context:
generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
else:
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
generator = generator.to(dtype).to(self.device)
generator = self.load_model(generator, 'generator')
if generator_ema is not None:
if loading_context is dummy_context:
generator_ema.load_state_dict(generator.state_dict())
else:
for param_name, param in generator.state_dict().items():
set_module_tensor_to_device(generator_ema, param_name, "cpu", value=param)
generator_ema = self.load_model(generator_ema, 'generator_ema')
generator_ema.to(dtype).to(self.device).eval().requires_grad_(False)
if self.config.use_fsdp:
fsdp_auto_wrap_policy = ModuleWrapPolicy([ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock])
generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
if generator_ema is not None:
generator_ema = FSDP(generator_ema, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
if skip_clip:
tokenizer = None
text_model = None
else:
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
return self.Models(
effnet=effnet, stage_a=stage_a,
generator=generator, generator_ema=generator_ema,
tokenizer=tokenizer, text_model=text_model
)
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
optimizer = optim.AdamW(models.generator.parameters(), lr=self.config.lr) # , eps=1e-7, betas=(0.9, 0.95))
optimizer = self.load_optimizer(optimizer, 'generator_optim',
fsdp_model=models.generator if self.config.use_fsdp else None)
return self.Optimizers(generator=optimizer)
def setup_schedulers(self, extras: Extras, models: Models,
optimizers: TrainingCore.Optimizers) -> Schedulers:
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
scheduler.last_epoch = self.info.total_steps
return self.Schedulers(generator=scheduler)
def _pyramid_noise(self, epsilon, size_range=None, levels=10, scale_mode='nearest'):
epsilon = epsilon.clone()
multipliers = [1]
for i in range(1, levels):
m = 0.75 ** i
h, w = epsilon.size(-2) // (2 ** i), epsilon.size(-2) // (2 ** i)
if size_range is None or (size_range[0] <= h <= size_range[1] or size_range[0] <= w <= size_range[1]):
offset = torch.randn(epsilon.size(0), epsilon.size(1), h, w, device=self.device)
epsilon = epsilon + torch.nn.functional.interpolate(offset, size=epsilon.shape[-2:],
mode=scale_mode) * m
multipliers.append(m)
if h <= 1 or w <= 1:
break
epsilon = epsilon / sum([m ** 2 for m in multipliers]) ** 0.5
# epsilon = epsilon / epsilon.std()
return epsilon
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
batch = next(data.iterator)
with torch.no_grad():
conditions = self.get_conditions(batch, models, extras)
latents = self.encode_latents(batch, models, extras)
epsilon = torch.randn_like(latents)
epsilon = self._pyramid_noise(epsilon, size_range=[1, 16])
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1,
epsilon=epsilon)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
pred = models.generator(noised, noise_cond, **conditions)
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
extras.gdf.loss_weight.update_buckets(logSNR, loss)
return loss, loss_adjusted
def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers,
schedulers: Schedulers):
if update:
loss_adjusted.backward()
grad_norm = nn.utils.clip_grad_norm_(models.generator.parameters(), 1.0)
optimizers_dict = optimizers.to_dict()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].step()
schedulers_dict = schedulers.to_dict()
for k in schedulers_dict:
if k != 'training':
schedulers_dict[k].step()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].zero_grad(set_to_none=True)
self.info.total_steps += 1
else:
loss_adjusted.backward()
grad_norm = torch.tensor(0.0).to(self.device)
return grad_norm
def models_to_save(self):
return ['generator', 'generator_ema']
def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
images = batch['images'].to(self.device)
return models.stage_a.encode(images)[0]
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
return models.stage_a.decode(latents.float()).clamp(0, 1)
if __name__ == '__main__':
print("Launching Script")
warpcore = WurstCore(
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None,
device=torch.device(int(os.environ.get("SLURM_LOCALID")))
)
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
# RUN TRAINING
warpcore()
|