gokaygokay's picture
full_files
2f4febc
raw
history blame
5.32 kB
import PIL
import torch
import requests
import torchvision
from math import ceil
from io import BytesIO
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
import math
from tqdm import tqdm
def download_image(url):
return PIL.Image.open(requests.get(url, stream=True).raw).convert("RGB")
def resize_image(image, size=768):
tensor_image = F.to_tensor(image)
resized_image = F.resize(tensor_image, size, antialias=True)
return resized_image
def downscale_images(images, factor=3/4):
scaled_height, scaled_width = int(((images.size(-2)*factor)//32)*32), int(((images.size(-1)*factor)//32)*32)
scaled_image = torchvision.transforms.functional.resize(images, (scaled_height, scaled_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST)
return scaled_image
def calculate_latent_sizes(height=1024, width=1024, batch_size=4, compression_factor_b=42.67, compression_factor_a=4.0):
resolution_multiple = 42.67
latent_height = ceil(height / compression_factor_b)
latent_width = ceil(width / compression_factor_b)
stage_c_latent_shape = (batch_size, 16, latent_height, latent_width)
latent_height = ceil(height / compression_factor_a)
latent_width = ceil(width / compression_factor_a)
stage_b_latent_shape = (batch_size, 4, latent_height, latent_width)
return stage_c_latent_shape, stage_b_latent_shape
def get_views(H, W, window_size=64, stride=16):
'''
- H, W: height and width of the latent
'''
num_blocks_height = (H - window_size) // stride + 1
num_blocks_width = (W - window_size) // stride + 1
total_num_blocks = int(num_blocks_height * num_blocks_width)
views = []
for i in range(total_num_blocks):
h_start = int((i // num_blocks_width) * stride)
h_end = h_start + window_size
w_start = int((i % num_blocks_width) * stride)
w_end = w_start + window_size
views.append((h_start, h_end, w_start, w_end))
return views
def show_images(images, rows=None, cols=None, **kwargs):
if images.size(1) == 1:
images = images.repeat(1, 3, 1, 1)
elif images.size(1) > 3:
images = images[:, :3]
if rows is None:
rows = 1
if cols is None:
cols = images.size(0) // rows
_, _, h, w = images.shape
imgs = []
for i, img in enumerate(images):
imgs.append( torchvision.transforms.functional.to_pil_image(img.clamp(0, 1)))
return imgs
def decode_b(conditions_b, unconditions_b, models_b, bshape, extras_b, device, \
stage_a_tiled=False, num_instance=4, patch_size=256, stride=24):
sampling_b = extras_b.gdf.sample(
models_b.generator.half(), conditions_b, bshape,
unconditions_b, device=device,
**extras_b.sampling_configs,
)
models_b.generator.cuda()
for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
sampled_b = sampled_b
models_b.generator.cpu()
torch.cuda.empty_cache()
if stage_a_tiled:
with torch.cuda.amp.autocast(dtype=torch.float16):
padding = (stride*2, stride*2, stride*2, stride*2)
sampled_b = torch.nn.functional.pad(sampled_b, padding, mode='reflect')
count = torch.zeros((sampled_b.shape[0], 3, sampled_b.shape[-2]*4, sampled_b.shape[-1]*4), requires_grad=False, device=sampled_b.device)
sampled = torch.zeros((sampled_b.shape[0], 3, sampled_b.shape[-2]*4, sampled_b.shape[-1]*4), requires_grad=False, device=sampled_b.device)
views = get_views(sampled_b.shape[-2], sampled_b.shape[-1], window_size=patch_size, stride=stride)
for view_idx, (h_start, h_end, w_start, w_end) in enumerate(tqdm(views, total=len(views))):
sampled[:, :, h_start*4:h_end*4, w_start*4:w_end*4] += models_b.stage_a.decode(sampled_b[:, :, h_start:h_end, w_start:w_end]).float()
count[:, :, h_start*4:h_end*4, w_start*4:w_end*4] += 1
sampled /= count
sampled = sampled[:, :, stride*4*2:-stride*4*2, stride*4*2:-stride*4*2]
else:
sampled = models_b.stage_a.decode(sampled_b, tiled_decoding=stage_a_tiled)
return sampled.float()
def generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device, conditions=None, unconditions=None):
if conditions is None:
conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
if unconditions is None:
unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
sampling_c = extras.gdf.sample(
models.generator, conditions, stage_c_latent_shape, stage_c_latent_shape_lr,
unconditions, device=device, **extras.sampling_configs,
)
for idx, (sampled_c, sampled_c_curr, _, _) in enumerate(tqdm(sampling_c, total=extras.sampling_configs['timesteps'])):
sampled_c = sampled_c
return sampled_c
def get_target_lr_size(ratio, std_size=24):
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio))
return (h * 32 , w *32 )