Flux-Florence-2 / modules /controlnet.py
gokaygokay's picture
full_files
2f4febc
raw
history blame
14.3 kB
import torchvision
import torch
from torch import nn
import numpy as np
import kornia
import cv2
from core.utils import load_or_fail
#from insightface.app.common import Face
from .effnet import EfficientNetEncoder
from .cnet_modules.pidinet import PidiNetDetector
from .cnet_modules.inpainting.saliency_model import MicroResNet
#from .cnet_modules.face_id.arcface import FaceDetector, ArcFaceRecognizer
from .common import LayerNorm2d
class CNetResBlock(nn.Module):
def __init__(self, c):
super().__init__()
self.blocks = nn.Sequential(
LayerNorm2d(c),
nn.GELU(),
nn.Conv2d(c, c, kernel_size=3, padding=1),
LayerNorm2d(c),
nn.GELU(),
nn.Conv2d(c, c, kernel_size=3, padding=1),
)
def forward(self, x):
return x + self.blocks(x)
class ControlNet(nn.Module):
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None):
super().__init__()
if bottleneck_mode is None:
bottleneck_mode = 'effnet'
self.proj_blocks = proj_blocks
if bottleneck_mode == 'effnet':
embd_channels = 1280
#self.backbone = torchvision.models.efficientnet_v2_s(weights='DEFAULT').features.eval()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
if c_in != 3:
in_weights = self.backbone[0][0].weight.data
self.backbone[0][0] = nn.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False)
if c_in > 3:
nn.init.constant_(self.backbone[0][0].weight, 0)
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
else:
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
elif bottleneck_mode == 'simple':
embd_channels = c_in
self.backbone = nn.Sequential(
nn.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1),
)
elif bottleneck_mode == 'large':
self.backbone = nn.Sequential(
nn.Conv2d(c_in, 4096 * 4, kernel_size=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(4096 * 4, 1024, kernel_size=1),
*[CNetResBlock(1024) for _ in range(8)],
nn.Conv2d(1024, 1280, kernel_size=1),
)
embd_channels = 1280
else:
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
self.projections = nn.ModuleList()
for _ in range(len(proj_blocks)):
self.projections.append(nn.Sequential(
nn.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False),
))
nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
def forward(self, x):
x = self.backbone(x)
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
for i, idx in enumerate(self.proj_blocks):
proj_outputs[idx] = self.projections[i](x)
return proj_outputs
class ControlNetDeliverer():
def __init__(self, controlnet_projections):
self.controlnet_projections = controlnet_projections
self.restart()
def restart(self):
self.idx = 0
return self
def __call__(self):
if self.idx < len(self.controlnet_projections):
output = self.controlnet_projections[self.idx]
else:
output = None
self.idx += 1
return output
# CONTROLNET FILTERS ----------------------------------------------------
class BaseFilter():
def __init__(self, device):
self.device = device
def num_channels(self):
return 3
def __call__(self, x):
return x
class CannyFilter(BaseFilter):
def __init__(self, device, resize=224):
super().__init__(device)
self.resize = resize
def num_channels(self):
return 1
def __call__(self, x):
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
edges = [cv2.Canny(x[i].mul(255).permute(1, 2, 0).cpu().numpy().astype(np.uint8), 100, 200) for i in range(len(x))]
edges = torch.stack([torch.tensor(e).div(255).unsqueeze(0) for e in edges], dim=0)
if self.resize is not None:
edges = nn.functional.interpolate(edges, size=orig_size, mode='bilinear')
return edges
class QRFilter(BaseFilter):
def __init__(self, device, resize=224, blobify=True, dilation_kernels=[3, 5, 7], blur_kernels=[15]):
super().__init__(device)
self.resize = resize
self.blobify = blobify
self.dilation_kernels = dilation_kernels
self.blur_kernels = blur_kernels
def num_channels(self):
return 1
def __call__(self, x):
x = x.to(self.device)
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
x = kornia.color.rgb_to_hsv(x)[:, -1:]
# blobify
if self.blobify:
d_kernel = np.random.choice(self.dilation_kernels)
d_blur = np.random.choice(self.blur_kernels)
if d_blur > 0:
x = torchvision.transforms.GaussianBlur(d_blur)(x)
if d_kernel > 0:
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5,
d_kernel).pow(2)[:,
None]) < 0.3).float().to(self.device)
x = kornia.morphology.dilation(x, blob_mask)
x = kornia.morphology.erosion(x, blob_mask)
# mask
vmax, vmin = x.amax(dim=[2, 3], keepdim=True)[0], x.amin(dim=[2, 3], keepdim=True)[0]
th = (vmax - vmin) * 0.33
high_brightness, low_brightness = (x > (vmax - th)).float(), (x < (vmin + th)).float()
mask = (torch.ones_like(x) - low_brightness + high_brightness) * 0.5
if self.resize is not None:
mask = nn.functional.interpolate(mask, size=orig_size, mode='bilinear')
return mask.cpu()
class PidiFilter(BaseFilter):
def __init__(self, device, resize=224, dilation_kernels=[0, 3, 5, 7, 9], binarize=True):
super().__init__(device)
self.resize = resize
self.model = PidiNetDetector(device)
self.dilation_kernels = dilation_kernels
self.binarize = binarize
def num_channels(self):
return 1
def __call__(self, x):
x = x.to(self.device)
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
x = self.model(x)
d_kernel = np.random.choice(self.dilation_kernels)
if d_kernel > 0:
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5, d_kernel).pow(2)[
:, None]) < 0.3).float().to(self.device)
x = kornia.morphology.dilation(x, blob_mask)
if self.binarize:
th = np.random.uniform(0.05, 0.7)
x = (x > th).float()
if self.resize is not None:
x = nn.functional.interpolate(x, size=orig_size, mode='bilinear')
return x.cpu()
class SRFilter(BaseFilter):
def __init__(self, device, scale_factor=1 / 4):
super().__init__(device)
self.scale_factor = scale_factor
def num_channels(self):
return 3
def __call__(self, x):
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest")
return torch.nn.functional.interpolate(x, scale_factor=1 / self.scale_factor, mode="nearest")
class SREffnetFilter(BaseFilter):
def __init__(self, device, scale_factor=1/2):
super().__init__(device)
self.scale_factor = scale_factor
self.effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
self.effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail("models/effnet_encoder.safetensors")
self.effnet.load_state_dict(effnet_checkpoint)
self.effnet.eval().requires_grad_(False)
def num_channels(self):
return 16
def __call__(self, x):
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest")
with torch.no_grad():
effnet_embedding = self.effnet(self.effnet_preprocess(x.to(self.device))).cpu()
effnet_embedding = torch.nn.functional.interpolate(effnet_embedding, scale_factor=1/self.scale_factor, mode="nearest")
upscaled_image = torch.nn.functional.interpolate(x, scale_factor=1/self.scale_factor, mode="nearest")
return effnet_embedding, upscaled_image
class InpaintFilter(BaseFilter):
def __init__(self, device, thresold=[0.04, 0.4], p_outpaint=0.4):
super().__init__(device)
self.saliency_model = MicroResNet().eval().requires_grad_(False).to(device)
self.saliency_model.load_state_dict(load_or_fail("modules/cnet_modules/inpainting/saliency_model.pt"))
self.thresold = thresold
self.p_outpaint = p_outpaint
def num_channels(self):
return 4
def __call__(self, x, mask=None, threshold=None, outpaint=None):
x = x.to(self.device)
resized_x = torchvision.transforms.functional.resize(x, 240, antialias=True)
if threshold is None:
threshold = np.random.uniform(self.thresold[0], self.thresold[1])
if mask is None:
saliency_map = self.saliency_model(resized_x) > threshold
if outpaint is None:
if np.random.rand() < self.p_outpaint:
saliency_map = ~saliency_map
else:
if outpaint:
saliency_map = ~saliency_map
interpolated_saliency_map = torch.nn.functional.interpolate(saliency_map.float(), size=x.shape[2:], mode="nearest")
saliency_map = torchvision.transforms.functional.gaussian_blur(interpolated_saliency_map, 141) > 0.5
inpainted_images = torch.where(saliency_map, torch.ones_like(x), x)
mask = torch.nn.functional.interpolate(saliency_map.float(), size=inpainted_images.shape[2:], mode="nearest")
else:
mask = mask.to(self.device)
inpainted_images = torch.where(mask, torch.ones_like(x), x)
c_inpaint = torch.cat([inpainted_images, mask], dim=1)
return c_inpaint.cpu()
# IDENTITY
'''
class IdentityFilter(BaseFilter):
def __init__(self, device, max_faces=4, p_drop=0.05, p_full=0.3):
detector_path = 'modules/cnet_modules/face_id/models/buffalo_l/det_10g.onnx'
recognizer_path = 'modules/cnet_modules/face_id/models/buffalo_l/w600k_r50.onnx'
super().__init__(device)
self.max_faces = max_faces
self.p_drop = p_drop
self.p_full = p_full
self.detector = FaceDetector(detector_path, device=device)
self.recognizer = ArcFaceRecognizer(recognizer_path, device=device)
self.id_colors = torch.tensor([
[1.0, 0.0, 0.0], # RED
[0.0, 1.0, 0.0], # GREEN
[0.0, 0.0, 1.0], # BLUE
[1.0, 0.0, 1.0], # PURPLE
[0.0, 1.0, 1.0], # CYAN
[1.0, 1.0, 0.0], # YELLOW
[0.5, 0.0, 0.0], # DARK RED
[0.0, 0.5, 0.0], # DARK GREEN
[0.0, 0.0, 0.5], # DARK BLUE
[0.5, 0.0, 0.5], # DARK PURPLE
[0.0, 0.5, 0.5], # DARK CYAN
[0.5, 0.5, 0.0], # DARK YELLOW
])
def num_channels(self):
return 512
def get_faces(self, image):
npimg = image.permute(1, 2, 0).mul(255).to(device="cpu", dtype=torch.uint8).cpu().numpy()
bgr = cv2.cvtColor(npimg, cv2.COLOR_RGB2BGR)
bboxes, kpss = self.detector.detect(bgr, max_num=self.max_faces)
N = len(bboxes)
ids = torch.zeros((N, 512), dtype=torch.float32)
for i in range(N):
face = Face(bbox=bboxes[i, :4], kps=kpss[i], det_score=bboxes[i, 4])
ids[i, :] = self.recognizer.get(bgr, face)
tbboxes = torch.tensor(bboxes[:, :4], dtype=torch.int)
ids = ids / torch.linalg.norm(ids, dim=1, keepdim=True)
return tbboxes, ids # returns bounding boxes (N x 4) and ID vectors (N x 512)
def __call__(self, x):
visual_aid = x.clone().cpu()
face_mtx = torch.zeros(x.size(0), 512, x.size(-2) // 32, x.size(-1) // 32)
for i in range(x.size(0)):
bounding_boxes, ids = self.get_faces(x[i])
for j in range(bounding_boxes.size(0)):
if np.random.rand() > self.p_drop:
sx, sy, ex, ey = (bounding_boxes[j] / 32).clamp(min=0).round().int().tolist()
ex, ey = max(ex, sx + 1), max(ey, sy + 1)
if bounding_boxes.size(0) == 1 and np.random.rand() < self.p_full:
sx, sy, ex, ey = 0, 0, x.size(-1) // 32, x.size(-2) // 32
face_mtx[i, :, sy:ey, sx:ex] = ids[j:j + 1, :, None, None]
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] += self.id_colors[j % 13, :,
None, None]
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] *= 0.5
return face_mtx.to(x.device), visual_aid.to(x.device)
'''