File size: 1,383 Bytes
0dc8cc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Necessary imports
import sys
from typing import Any
import torch
from transformers import AutoModel, AutoTokenizer

# Local imports
from src.logger import logging
from src.exception import CustomExceptionHandling


def load_model_and_tokenizer(model_name: str, device: str) -> Any:
    """

    Load the model and tokenizer.



    Args:

        - model_name (str): The name of the model to load.

        - device (str): The device to load the model onto.



    Returns:

        - model: The loaded model.

        - tokenizer: The loaded tokenizer.

    """
    try:
        # Load the model and tokenizer
        model = AutoModel.from_pretrained(
            model_name,
            trust_remote_code=True,
            attn_implementation="sdpa",
            torch_dtype=torch.bfloat16,
        )
        model = model.to(device=device)
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        model.eval()

        # Log the successful loading of the model and tokenizer
        logging.info("Model and tokenizer loaded successfully.")

        # Return the model and tokenizer
        return model, tokenizer

    # Handle exceptions that may occur during model and tokenizer loading
    except Exception as e:
        # Custom exception handling
        raise CustomExceptionHandling(e, sys) from e