time-machine / ledits /pipeline_leditspp_stable_diffusion.py
linoyts's picture
linoyts HF staff
Upload 4 files
376b097 verified
raw
history blame
74.9 kB
import inspect
import math
from itertools import repeat
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import PIL
>>> import requests
>>> import torch
>>> from io import BytesIO
>>> from diffusers import LEditsPPPipelineStableDiffusion
>>> from diffusers.utils import load_image
>>> pipe = LEditsPPPipelineStableDiffusion.from_pretrained(
... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/cherry_blossom.png"
>>> image = load_image(img_url).convert("RGB")
>>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.1)
>>> edited_image = pipe(
... editing_prompt=["cherry blossom"], edit_guidance_scale=10.0, edit_threshold=0.75
... ).images[0]
```
"""
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.AttentionStore
class LeditsAttentionStore:
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
# attn.shape = batch_size * head_size, seq_len query, seq_len_key
if attn.shape[1] <= self.max_size:
bs = 1 + int(PnP) + editing_prompts
skip = 2 if PnP else 1 # skip PnP & unconditional
attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
source_batch_size = int(attn.shape[1] // bs)
self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
self.step_store[key].append(attn)
def between_steps(self, store_step=True):
if store_step:
if self.average:
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
else:
if len(self.attention_store) == 0:
self.attention_store = [self.step_store]
else:
self.attention_store.append(self.step_store)
self.cur_step += 1
self.step_store = self.get_empty_store()
def get_attention(self, step: int):
if self.average:
attention = {
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
}
else:
assert step is not None
attention = self.attention_store[step]
return attention
def aggregate_attention(
self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
):
out = [[] for x in range(self.batch_size)]
if isinstance(res, int):
num_pixels = res**2
resolution = (res, res)
else:
num_pixels = res[0] * res[1]
resolution = res[:2]
for location in from_where:
for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
for batch, item in enumerate(bs_item):
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
out[batch].append(cross_maps)
out = torch.stack([torch.cat(x, dim=0) for x in out])
# average over heads
out = out.sum(1) / out.shape[1]
return out
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
self.step_store = self.get_empty_store()
self.attention_store = []
self.cur_step = 0
self.average = average
self.batch_size = batch_size
if max_size is None:
self.max_size = max_resolution**2
elif max_size is not None and max_resolution is None:
self.max_size = max_size
else:
raise ValueError("Only allowed to set one of max_resolution or max_size")
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.GaussianSmoothing
class LeditsGaussianSmoothing:
def __init__(self, device):
kernel_size = [3, 3]
sigma = [0.5, 0.5]
# The gaussian kernel is the product of the gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
self.weight = kernel.to(device)
def __call__(self, input):
"""
Arguments:
Apply gaussian filter to input.
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return F.conv2d(input, weight=self.weight.to(input.dtype))
class LEDITSCrossAttnProcessor:
def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
self.attnstore = attention_store
self.place_in_unet = place_in_unet
self.editing_prompts = editing_prompts
self.pnp = pnp
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states,
attention_mask=None,
temb=None,
):
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
self.attnstore(
attention_probs,
is_cross=True,
place_in_unet=self.place_in_unet,
editing_prompts=self.editing_prompts,
PnP=self.pnp,
)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class LEditsPPPipelineStableDiffusion(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
"""
Pipeline for textual image editing using LEDits++ with Stable Diffusion.
This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionPipeline`]. Check the superclass
documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular
device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer ([`~transformers.CLIPTokenizer`]):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
automatically be set to [`DPMSolverMultistepScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, DPMSolverMultistepScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
scheduler = DPMSolverMultistepScheduler.from_config(
scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
)
logger.warning(
"This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
"The scheduler has been changed to DPMSolverMultistepScheduler."
)
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.inversion_steps = None
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, eta, generator=None):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
def check_inputs(
self,
negative_prompt=None,
editing_prompt_embeddings=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if editing_prompt_embeddings is not None and negative_prompt_embeds is not None:
if editing_prompt_embeddings.shape != negative_prompt_embeds.shape:
raise ValueError(
"`editing_prompt_embeddings` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `editing_prompt_embeddings` {editing_prompt_embeddings.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents):
# shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
# if latents.shape != shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_unet(self, attention_store, PnP: bool = False):
attn_procs = {}
for name in self.unet.attn_processors.keys():
if name.startswith("mid_block"):
place_in_unet = "mid"
elif name.startswith("up_blocks"):
place_in_unet = "up"
elif name.startswith("down_blocks"):
place_in_unet = "down"
else:
continue
if "attn2" in name and place_in_unet != "mid":
attn_procs[name] = LEDITSCrossAttnProcessor(
attention_store=attention_store,
place_in_unet=place_in_unet,
pnp=PnP,
editing_prompts=self.enabled_editing_prompts,
)
else:
attn_procs[name] = AttnProcessor()
self.unet.set_attn_processor(attn_procs)
def encode_prompt(
self,
device,
num_images_per_prompt,
enable_edit_guidance,
negative_prompt=None,
editing_prompt=None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
editing_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
enable_edit_guidance (`bool`):
whether to perform any editing or reconstruct the input image instead
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
editing_prompt (`str` or `List[str]`, *optional*):
Editing prompt(s) to be encoded. If not defined, one has to pass `editing_prompt_embeds` instead.
editing_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
batch_size = self.batch_size
num_edit_tokens = None
if negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but exoected"
f"{batch_size} based on the input images. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = negative_prompt_embeds.dtype
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
if enable_edit_guidance:
if editing_prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
# if isinstance(self, TextualInversionLoaderMixin):
# prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
if isinstance(editing_prompt, str):
editing_prompt = [editing_prompt]
max_length = negative_prompt_embeds.shape[1]
text_inputs = self.tokenizer(
[x for item in editing_prompt for x in repeat(item, batch_size)],
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
return_length=True,
)
num_edit_tokens = text_inputs.length - 2 # not counting startoftext and endoftext
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
[x for item in editing_prompt for x in repeat(item, batch_size)],
padding="longest",
return_tensors="pt",
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
editing_prompt_embeds = editing_prompt_embeds[0]
else:
editing_prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
editing_prompt_embeds = editing_prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
editing_prompt_embeds = self.text_encoder.text_model.final_layer_norm(editing_prompt_embeds)
editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device)
bs_embed_edit, seq_len, _ = editing_prompt_embeds.shape
editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device)
editing_prompt_embeds = editing_prompt_embeds.repeat(1, num_images_per_prompt, 1)
editing_prompt_embeds = editing_prompt_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return editing_prompt_embeds, negative_prompt_embeds, num_edit_tokens
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
editing_prompt: Optional[Union[str, List[str]]] = None,
editing_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
user_mask: Optional[torch.Tensor] = None,
sem_guidance: Optional[List[torch.Tensor]] = None,
use_cross_attn_mask: bool = False,
use_intersect_mask: bool = True,
attn_store_steps: Optional[List[int]] = [],
store_averaged_over_steps: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
The call function to the pipeline for editing. The
[`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusion.invert`] method has to be called beforehand. Edits will
always be performed for the last inverted image(s).
Args:
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] instead of a plain
tuple.
editing_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. The image is reconstructed by setting
`editing_prompt = None`. Guidance direction of prompt should be specified via
`reverse_editing_direction`.
editing_prompt_embeds (`torch.Tensor>`, *optional*):
Pre-computed embeddings to use for guiding the image generation. Guidance direction of embedding should
be specified via `reverse_editing_direction`.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
Guidance scale for guiding the image generation. If provided as list values should correspond to
`editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
Paper](https://arxiv.org/abs/2301.12247).
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
Number of diffusion steps (for each prompt) for which guidance will not be applied.
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
Number of diffusion steps (for each prompt) after which guidance will no longer be applied.
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++
Paper](https://arxiv.org/abs/2301.12247).
user_mask (`torch.Tensor`, *optional*):
User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
implicit masks do not meet user preferences.
sem_guidance (`List[torch.Tensor]`, *optional*):
List of pre-generated guidance vectors to be applied at generation. Length of the list has to
correspond to `num_inference_steps`.
use_cross_attn_mask (`bool`, defaults to `False`):
Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
paper](https://arxiv.org/pdf/2311.16711.pdf).
use_intersect_mask (`bool`, defaults to `True`):
Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
attn_store_steps (`List[int]`, *optional*):
Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
store_averaged_over_steps (`bool`, defaults to `True`):
Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
False, attention maps for each step are stores separately. Just for visualization purposes.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
returning a tuple, the first element is a list with the generated images, and the second element is a list
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
content, according to the `safety_checker`.
"""
if self.inversion_steps is None:
raise ValueError(
"You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
)
eta = self.eta
num_images_per_prompt = 1
latents = self.init_latents
zs = self.zs
self.scheduler.set_timesteps(len(self.scheduler.timesteps))
if use_intersect_mask:
use_cross_attn_mask = True
if use_cross_attn_mask:
self.smoothing = LeditsGaussianSmoothing(self.device)
if user_mask is not None:
user_mask = user_mask.to(self.device)
org_prompt = ""
# 1. Check inputs. Raise error if not correct
self.check_inputs(
negative_prompt,
editing_prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
# 2. Define call parameters
batch_size = self.batch_size
if editing_prompt:
enable_edit_guidance = True
if isinstance(editing_prompt, str):
editing_prompt = [editing_prompt]
self.enabled_editing_prompts = len(editing_prompt)
elif editing_prompt_embeds is not None:
enable_edit_guidance = True
self.enabled_editing_prompts = editing_prompt_embeds.shape[0]
else:
self.enabled_editing_prompts = 0
enable_edit_guidance = False
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
edit_concepts, uncond_embeddings, num_edit_tokens = self.encode_prompt(
editing_prompt=editing_prompt,
device=self.device,
num_images_per_prompt=num_images_per_prompt,
enable_edit_guidance=enable_edit_guidance,
negative_prompt=negative_prompt,
editing_prompt_embeds=editing_prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if enable_edit_guidance:
text_embeddings = torch.cat([uncond_embeddings, edit_concepts])
self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt
else:
text_embeddings = torch.cat([uncond_embeddings])
# 4. Prepare timesteps
# self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.inversion_steps
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0] :])}
if use_cross_attn_mask:
self.attention_store = LeditsAttentionStore(
average=store_averaged_over_steps,
batch_size=batch_size,
max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
max_resolution=None,
)
self.prepare_unet(self.attention_store, PnP=False)
resolution = latents.shape[-2:]
att_res = (int(resolution[0] / 4), int(resolution[1] / 4))
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
None,
None,
text_embeddings.dtype,
self.device,
latents,
)
# 6. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
self.sem_guidance = None
self.activation_mask = None
# 7. Denoising loop
num_warmup_steps = 0
with self.progress_bar(total=len(timesteps)) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
if enable_edit_guidance:
latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
else:
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
text_embed_input = text_embeddings
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample
noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64]
noise_pred_uncond = noise_pred_out[0]
noise_pred_edit_concepts = noise_pred_out[1:]
noise_guidance_edit = torch.zeros(
noise_pred_uncond.shape,
device=self.device,
dtype=noise_pred_uncond.dtype,
)
if sem_guidance is not None and len(sem_guidance) > i:
noise_guidance_edit += sem_guidance[i].to(self.device)
elif enable_edit_guidance:
if self.activation_mask is None:
self.activation_mask = torch.zeros(
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
)
if self.sem_guidance is None:
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
if isinstance(edit_warmup_steps, list):
edit_warmup_steps_c = edit_warmup_steps[c]
else:
edit_warmup_steps_c = edit_warmup_steps
if i < edit_warmup_steps_c:
continue
if isinstance(edit_guidance_scale, list):
edit_guidance_scale_c = edit_guidance_scale[c]
else:
edit_guidance_scale_c = edit_guidance_scale
if isinstance(edit_threshold, list):
edit_threshold_c = edit_threshold[c]
else:
edit_threshold_c = edit_threshold
if isinstance(reverse_editing_direction, list):
reverse_editing_direction_c = reverse_editing_direction[c]
else:
reverse_editing_direction_c = reverse_editing_direction
if isinstance(edit_cooldown_steps, list):
edit_cooldown_steps_c = edit_cooldown_steps[c]
elif edit_cooldown_steps is None:
edit_cooldown_steps_c = i + 1
else:
edit_cooldown_steps_c = edit_cooldown_steps
if i >= edit_cooldown_steps_c:
continue
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
if reverse_editing_direction_c:
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
if user_mask is not None:
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
if use_cross_attn_mask:
out = self.attention_store.aggregate_attention(
attention_maps=self.attention_store.step_store,
prompts=self.text_cross_attention_maps,
res=att_res,
from_where=["up", "down"],
is_cross=True,
select=self.text_cross_attention_maps.index(editing_prompt[c]),
)
attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext
# average over all tokens
if attn_map.shape[3] != num_edit_tokens[c]:
raise ValueError(
f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
)
attn_map = torch.sum(attn_map, dim=3)
# gaussian_smoothing
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
attn_map = self.smoothing(attn_map).squeeze(1)
# torch.quantile function expects float32
if attn_map.dtype == torch.float32:
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
else:
tmp = torch.quantile(
attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
).to(attn_map.dtype)
attn_mask = torch.where(
attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
)
# resolution must match latent space dimension
attn_mask = F.interpolate(
attn_mask.unsqueeze(1),
noise_guidance_edit_tmp.shape[-2:], # 64,64
).repeat(1, 4, 1, 1)
self.activation_mask[i, c] = attn_mask.detach().cpu()
if not use_intersect_mask:
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
if use_intersect_mask:
if t <= 800:
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
noise_guidance_edit_tmp_quantile = torch.sum(
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
)
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
1, self.unet.config.in_channels, 1, 1
)
# torch.quantile function expects float32
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
tmp = torch.quantile(
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
edit_threshold_c,
dim=2,
keepdim=False,
)
else:
tmp = torch.quantile(
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
edit_threshold_c,
dim=2,
keepdim=False,
).to(noise_guidance_edit_tmp_quantile.dtype)
intersect_mask = (
torch.where(
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
torch.ones_like(noise_guidance_edit_tmp),
torch.zeros_like(noise_guidance_edit_tmp),
)
* attn_mask
)
self.activation_mask[i, c] = intersect_mask.detach().cpu()
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
else:
# print(f"only attention mask for step {i}")
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
elif not use_cross_attn_mask:
# calculate quantile
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
noise_guidance_edit_tmp_quantile = torch.sum(
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
)
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
# torch.quantile function expects float32
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
tmp = torch.quantile(
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
edit_threshold_c,
dim=2,
keepdim=False,
)
else:
tmp = torch.quantile(
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
edit_threshold_c,
dim=2,
keepdim=False,
).to(noise_guidance_edit_tmp_quantile.dtype)
self.activation_mask[i, c] = (
torch.where(
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
torch.ones_like(noise_guidance_edit_tmp),
torch.zeros_like(noise_guidance_edit_tmp),
)
.detach()
.cpu()
)
noise_guidance_edit_tmp = torch.where(
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
noise_guidance_edit_tmp,
torch.zeros_like(noise_guidance_edit_tmp),
)
noise_guidance_edit += noise_guidance_edit_tmp
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
noise_pred = noise_pred_uncond + noise_guidance_edit
if enable_edit_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred,
noise_pred_edit_concepts.mean(dim=0, keepdim=False),
guidance_rescale=self.guidance_rescale,
)
idx = t_to_idx[int(t)]
latents = self.scheduler.step(
noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs
).prev_sample
# step callback
if use_cross_attn_mask:
store_step = i in attn_store_steps
self.attention_store.between_steps(store_step)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
# prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
# 8. Post-processing
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
0
]
image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
@torch.no_grad()
def invert(
self,
image: PipelineImageInput,
source_prompt: str = "",
source_guidance_scale: float = 3.5,
num_inversion_steps: int = 30,
skip: float = 0.15,
generator: Optional[torch.Generator] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
height: Optional[int] = None,
width: Optional[int] = None,
resize_mode: Optional[str] = "default",
crops_coords: Optional[Tuple[int, int, int, int]] = None,
):
r"""
The function to the pipeline for image inversion as described by the [LEDITS++
Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
Args:
image (`PipelineImageInput`):
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
ratio.
source_prompt (`str`, defaults to `""`):
Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
if the `source_prompt` is `""`.
source_guidance_scale (`float`, defaults to `3.5`):
Strength of guidance during inversion.
num_inversion_steps (`int`, defaults to `30`):
Number of total performed inversion steps after discarding the initial `skip` steps.
skip (`float`, defaults to `0.15`):
Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
deterministic.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
height (`int`, *optional*, defaults to `None`):
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
height.
width (`int`, *optional*`, defaults to `None`):
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
resize_mode (`str`, *optional*, defaults to `default`):
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
image to fit within the specified width and height, maintaining the aspect ratio, and then center the
image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
supported for PIL image input.
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
The crop coordinates for each image in the batch. If `None`, will not crop the image.
Returns:
[`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
and respective VAE reconstruction(s).
"""
# Reset attn processor, we do not want to store attn maps during inversion
self.unet.set_attn_processor(AttnProcessor())
self.eta = 1.0
self.scheduler.config.timestep_spacing = "leading"
self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
timesteps = self.inversion_steps
# 1. encode image
x0, resized = self.encode_image(
image,
dtype=self.text_encoder.dtype,
height=height,
width=width,
resize_mode=resize_mode,
crops_coords=crops_coords,
)
self.batch_size = x0.shape[0]
# autoencoder reconstruction
image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
# 2. get embeddings
do_classifier_free_guidance = source_guidance_scale > 1.0
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
uncond_embedding, text_embeddings, _ = self.encode_prompt(
num_images_per_prompt=1,
device=self.device,
negative_prompt=None,
enable_edit_guidance=do_classifier_free_guidance,
editing_prompt=source_prompt,
lora_scale=lora_scale,
clip_skip=clip_skip,
)
# 3. find zs and xts
variance_noise_shape = (num_inversion_steps, *x0.shape)
# intermediate latents
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype)
for t in reversed(timesteps):
idx = num_inversion_steps - t_to_idx[int(t)] - 1
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
xts[idx] = self.scheduler.add_noise(x0, noise, torch.Tensor([t]))
xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
self.scheduler.set_timesteps(len(self.scheduler.timesteps))
# noise maps
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype)
with self.progress_bar(total=len(timesteps)) as progress_bar:
for t in timesteps:
idx = num_inversion_steps - t_to_idx[int(t)] - 1
# 1. predict noise residual
xt = xts[idx + 1]
noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample
if not source_prompt == "":
noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample
noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred)
xtm1 = xts[idx]
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
zs[idx] = z
# correction to avoid error accumulation
xts[idx] = xtm1_corrected
progress_bar.update()
self.init_latents = xts[-1].expand(self.batch_size, -1, -1, -1)
zs = zs.flip(0)
self.zs = zs
return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
@torch.no_grad()
def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
image = self.image_processor.preprocess(
image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
resized = self.image_processor.postprocess(image=image, output_type="pil")
if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
logger.warning(
"Your input images far exceed the default resolution of the underlying diffusion model. "
"The output images may contain severe artifacts! "
"Consider down-sampling the input using the `height` and `width` parameters"
)
image = image.to(dtype)
x0 = self.vae.encode(image.to(self.device)).latent_dist.mode()
x0 = x0.to(dtype)
x0 = self.vae.config.scaling_factor * x0
return x0, resized
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
# 1. get previous step value (=t-1)
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = (
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
)
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
# 4. Clip "predicted x_0"
if scheduler.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = scheduler._get_variance(timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
if variance > 0.0:
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
else:
noise = torch.tensor([0.0]).to(latents.device)
return noise, mu_xt + (eta * variance**0.5) * noise
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
def first_order_update(model_output, sample): # timestep, prev_timestep, sample):
sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
h = lambda_t - lambda_s
mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
mu_xt = scheduler.dpm_solver_first_order_update(
model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
)
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
if sigma > 0.0:
noise = (prev_latents - mu_xt) / sigma
else:
noise = torch.tensor([0.0]).to(sample.device)
prev_sample = mu_xt + sigma * noise
return noise, prev_sample
def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample):
sigma_t, sigma_s0, sigma_s1 = (
scheduler.sigmas[scheduler.step_index + 1],
scheduler.sigmas[scheduler.step_index],
scheduler.sigmas[scheduler.step_index - 1],
)
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
m0, m1 = model_output_list[-1], model_output_list[-2]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
mu_xt = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
)
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
if sigma > 0.0:
noise = (prev_latents - mu_xt) / sigma
else:
noise = torch.tensor([0.0]).to(sample.device)
prev_sample = mu_xt + sigma * noise
return noise, prev_sample
if scheduler.step_index is None:
scheduler._init_step_index(timestep)
model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
for i in range(scheduler.config.solver_order - 1):
scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
scheduler.model_outputs[-1] = model_output
if scheduler.lower_order_nums < 1:
noise, prev_sample = first_order_update(model_output, latents)
else:
noise, prev_sample = second_order_update(scheduler.model_outputs, latents)
if scheduler.lower_order_nums < scheduler.config.solver_order:
scheduler.lower_order_nums += 1
# upon completion increase step index by one
scheduler._step_index += 1
return noise, prev_sample
def compute_noise(scheduler, *args):
if isinstance(scheduler, DDIMScheduler):
return compute_noise_ddim(scheduler, *args)
elif (
isinstance(scheduler, DPMSolverMultistepScheduler)
and scheduler.config.algorithm_type == "sde-dpmsolver++"
and scheduler.config.solver_order == 2
):
return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
else:
raise NotImplementedError