Spaces:
Running
Running
File size: 2,008 Bytes
78011f3 bef7b02 78011f3 4dad4c8 78011f3 0c8a603 78011f3 b0c22d0 78011f3 2deb7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
device_map = 'cuda'
HF_TOKEN = os.environ.get("HF_TOKEN", None)
def load_model() -> AutoModelForCausalLM:
return AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map)
def load_tokenizer() -> AutoTokenizer:
return AutoTokenizer.from_pretrained(model_name)
def preprocess_messages(message: str, history: list, system_prompt: str) -> dict:
messages = [{'role': 'system', 'content': system_prompt}, {'role': 'user', 'content': message}]
prompt = load_tokenizer().apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return prompt
def generate_text(prompt: str, max_new_tokens: int, temperature: float) -> str:
model = load_model()
terminators = [load_tokenizer().eos_token_id, load_tokenizer().convert_tokens_to_ids(['\n'])]
temp = temperature + 0.1
outputs = model.generate(
prompt,
max_new_tokens=max_new_tokens,
eos_token_id=terminators[0],
do_sample=True,
temperature=temp,
top_p=0.9
)
return load_tokenizer().decode(outputs[0], skip_special_tokens=True)
def chat_function(
message: str,
history: list,
system_prompt: str,
max_new_tokens: int,
temperature: float
) -> str:
prompt = preprocess_messages(message, history, system_prompt)
return generate_text(prompt, max_new_tokens, temperature)
gr.ChatInterface(
chat_function,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
title="LLAMA3 Chat",
description="""Chat with llama3""",
theme="soft",
additional_inputs=[
gr.Textbox("You shall answer to all the questions as very smart AI", label="System Prompt"),
gr.Slider(512, 4096, label="Max New Tokens"),
gr.Slider(0, 1, label="Temperature")
]
).launch(debug=True) |