Spaces:
Runtime error
Runtime error
import torch | |
import librosa | |
import time | |
from transformers import set_seed, Wav2Vec2ForCTC, AutoProcessor | |
import numpy as np | |
device = 0 if torch.cuda.is_available() else "cpu" | |
def goai_stt(fichier): | |
""" | |
Transcrire un fichier audio donné. | |
Paramètres | |
---------- | |
fichier: str | tuple[int, np.ndarray] | |
Le chemin d'accès au fichier audio ou le tuple contenant le taux d'échantillonnage et les données audio. | |
Return | |
---------- | |
transcript: str | |
Le texte transcrit. | |
""" | |
print("Fichier entré en entréé ---------> ", fichier) | |
if fichier is None: | |
raise ValueError("Le fichier audio est manquant.") | |
### assurer reproducibilité | |
set_seed(2024) | |
start_time = time.time() | |
### charger le modèle de transcription | |
model_id = "anyantudre/wav2vec2-large-mms-1b-mos-V1" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang="mos", ignore_mismatched_sizes=True).to(device) | |
if isinstance(fichier, str): | |
### preprocessing de l'audio à partir d'un fichier | |
signal, sampling_rate = librosa.load(fichier, sr=16000) | |
else: | |
### preprocessing de l'audio à partir d'un tableau numpy | |
sampling_rate, signal = fichier | |
# Convert the signal to float32 | |
signal = signal.astype(np.float32) | |
inputs = processor(signal, sampling_rate=16000, return_tensors="pt", padding=True).to(device) | |
### faire l'inference | |
with torch.no_grad(): | |
outputs = model(**inputs).logits | |
pred_ids = torch.argmax(outputs, dim=-1)[0] | |
transcription = processor.decode(pred_ids) | |
print("Temps écoulé: ", int(time.time() - start_time), " secondes") | |
return transcription | |