File size: 7,910 Bytes
e97665c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse

import gradio as gr
from llama2_wrapper import LLAMA2_WRAPPER

FIM_PREFIX = "<PRE> "
FIM_MIDDLE = " <MID>"
FIM_SUFFIX = " <SUF>"

FIM_INDICATOR = "<FILL_ME>"

EOS_STRING = "</s>"
EOT_STRING = "<EOT>"


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_path",
        type=str,
        default="./models/codellama-7b-instruct.ggmlv3.Q4_0.bin",
        help="model path",
    )
    parser.add_argument(
        "--backend_type",
        type=str,
        default="llama.cpp",
        help="Backend options: llama.cpp, gptq, transformers",
    )
    parser.add_argument(
        "--max_tokens",
        type=int,
        default=4000,
        help="Maximum context size.",
    )
    parser.add_argument(
        "--load_in_8bit",
        type=bool,
        default=False,
        help="Whether to use bitsandbytes 8 bit.",
    )
    parser.add_argument(
        "--share",
        type=bool,
        default=False,
        help="Whether to share public for gradio.",
    )
    args = parser.parse_args()

    llama2_wrapper = LLAMA2_WRAPPER(
        model_path=args.model_path,
        backend_type=args.backend_type,
        max_tokens=args.max_tokens,
        load_in_8bit=args.load_in_8bit,
    )

    def generate(
        prompt,
        temperature=0.9,
        max_new_tokens=256,
        top_p=0.95,
        repetition_penalty=1.0,
    ):
        temperature = float(temperature)
        if temperature < 1e-2:
            temperature = 1e-2
        top_p = float(top_p)
        fim_mode = False

        generate_kwargs = dict(
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            stream=True,
        )

        if FIM_INDICATOR in prompt:
            fim_mode = True
            try:
                prefix, suffix = prompt.split(FIM_INDICATOR)
            except:
                raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!")
            prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}"

        stream = llama2_wrapper.__call__(prompt, **generate_kwargs)

        if fim_mode:
            output = prefix
        else:
            output = prompt

        # for response in stream:
        #     output += response
        #     yield output
        # return output

        previous_token = ""
        for response in stream:
            if any([end_token in response for end_token in [EOS_STRING, EOT_STRING]]):
                if fim_mode:
                    output += suffix
                    yield output
                    return output
                    print("output", output)
                else:
                    return output
            else:
                output += response
            previous_token = response
            yield output
        return output

    examples = [
        'def remove_non_ascii(s: str) -> str:\n    """ <FILL_ME>\nprint(remove_non_ascii(\'afkdj$$(\'))',
        "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
        "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
        "Poor English: She no went to the market. Corrected English:",
        "def alternating(list1, list2):\n   results = []\n   for i in range(min(len(list1), len(list2))):\n       results.append(list1[i])\n       results.append(list2[i])\n   if len(list1) > len(list2):\n       <FILL_ME>\n   else:\n       results.extend(list2[i+1:])\n   return results",
    ]

    def process_example(args):
        for x in generate(args):
            pass
        return x

    description = """
    <div style="text-align: center;">
        <h1>Code Llama Playground</h1>
    
    </div>
    <div style="text-align: center;">
        <p>This is a demo to complete code with Code Llama. For instruction purposes, please use llama2-webui app.py with CodeLlama-Instruct models. </p>
    </div>
    """
    with gr.Blocks() as demo:
        with gr.Column():
            gr.Markdown(description)
            with gr.Row():
                with gr.Column():
                    instruction = gr.Textbox(
                        placeholder="Enter your code here",
                        lines=5,
                        label="Input",
                        elem_id="q-input",
                    )
                    submit = gr.Button("Generate", variant="primary")
                    output = gr.Code(elem_id="q-output", lines=30, label="Output")
                    with gr.Row():
                        with gr.Column():
                            with gr.Accordion("Advanced settings", open=False):
                                with gr.Row():
                                    column_1, column_2 = gr.Column(), gr.Column()
                                    with column_1:
                                        temperature = gr.Slider(
                                            label="Temperature",
                                            value=0.1,
                                            minimum=0.0,
                                            maximum=1.0,
                                            step=0.05,
                                            interactive=True,
                                            info="Higher values produce more diverse outputs",
                                        )
                                        max_new_tokens = gr.Slider(
                                            label="Max new tokens",
                                            value=256,
                                            minimum=0,
                                            maximum=8192,
                                            step=64,
                                            interactive=True,
                                            info="The maximum numbers of new tokens",
                                        )
                                    with column_2:
                                        top_p = gr.Slider(
                                            label="Top-p (nucleus sampling)",
                                            value=0.90,
                                            minimum=0.0,
                                            maximum=1,
                                            step=0.05,
                                            interactive=True,
                                            info="Higher values sample more low-probability tokens",
                                        )
                                        repetition_penalty = gr.Slider(
                                            label="Repetition penalty",
                                            value=1.05,
                                            minimum=1.0,
                                            maximum=2.0,
                                            step=0.05,
                                            interactive=True,
                                            info="Penalize repeated tokens",
                                        )

                    gr.Examples(
                        examples=examples,
                        inputs=[instruction],
                        cache_examples=False,
                        fn=process_example,
                        outputs=[output],
                    )

        submit.click(
            generate,
            inputs=[
                instruction,
                temperature,
                max_new_tokens,
                top_p,
                repetition_penalty,
            ],
            outputs=[output],
        )
    demo.queue(concurrency_count=16).launch(share=args.share)


if __name__ == "__main__":
    main()