Spaces:
Sleeping
Sleeping
GoBoKyung
commited on
Commit
โข
5ffae2f
1
Parent(s):
074b669
city
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
from matplotlib import gridspec
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import numpy as np
|
5 |
from PIL import Image
|
|
|
6 |
import tensorflow as tf
|
7 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
8 |
import os
|
@@ -15,7 +13,7 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
15 |
)
|
16 |
|
17 |
def ade_palette():
|
18 |
-
"""ADE20K
|
19 |
return [
|
20 |
[204, 87, 92],
|
21 |
[112, 185, 212],
|
@@ -48,39 +46,18 @@ colormap = np.asarray(ade_palette())
|
|
48 |
|
49 |
def label_to_color_image(label):
|
50 |
if label.ndim != 2:
|
51 |
-
raise ValueError("2-D
|
52 |
|
53 |
if np.max(label) >= len(colormap):
|
54 |
-
raise ValueError("
|
55 |
return colormap[label]
|
56 |
|
57 |
-
def draw_plot(pred_img, seg):
|
58 |
-
fig = plt.figure(figsize=(20, 15))
|
59 |
-
|
60 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
61 |
-
|
62 |
-
plt.subplot(grid_spec[0])
|
63 |
-
plt.imshow(pred_img)
|
64 |
-
plt.axis('off')
|
65 |
-
LABEL_NAMES = np.asarray(labels_list)
|
66 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
67 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
68 |
-
|
69 |
-
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
70 |
-
ax = plt.subplot(grid_spec[1])
|
71 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
72 |
-
ax.yaxis.tick_right()
|
73 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
74 |
-
plt.xticks([], [])
|
75 |
-
ax.tick_params(width=0.0, labelsize=25)
|
76 |
-
return fig
|
77 |
-
|
78 |
def sepia(input_text):
|
79 |
-
#
|
80 |
if not os.path.isfile(input_text):
|
81 |
-
return "
|
82 |
|
83 |
-
#
|
84 |
input_img = Image.open(input_text)
|
85 |
|
86 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
@@ -102,13 +79,13 @@ def sepia(input_text):
|
|
102 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
103 |
pred_img = pred_img.astype(np.uint8)
|
104 |
|
105 |
-
#
|
106 |
pred_img = Image.fromarray(pred_img)
|
107 |
|
108 |
return pred_img
|
109 |
|
110 |
-
# Gradio
|
111 |
iface = gr.Interface(fn=sepia, inputs="image", outputs="image")
|
112 |
|
113 |
-
# Gradio
|
114 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
6 |
import os
|
|
|
13 |
)
|
14 |
|
15 |
def ade_palette():
|
16 |
+
"""ADE20K palette that maps each class to RGB values."""
|
17 |
return [
|
18 |
[204, 87, 92],
|
19 |
[112, 185, 212],
|
|
|
46 |
|
47 |
def label_to_color_image(label):
|
48 |
if label.ndim != 2:
|
49 |
+
raise ValueError("Expect 2-D input label")
|
50 |
|
51 |
if np.max(label) >= len(colormap):
|
52 |
+
raise ValueError("label value too large.")
|
53 |
return colormap[label]
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def sepia(input_text):
|
56 |
+
# Check if the input text is a valid file path
|
57 |
if not os.path.isfile(input_text):
|
58 |
+
return "Invalid file path. Please enter a valid image file path."
|
59 |
|
60 |
+
# Load the image using the input text (assumed to be a path to an image)
|
61 |
input_img = Image.open(input_text)
|
62 |
|
63 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
|
|
79 |
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
80 |
pred_img = pred_img.astype(np.uint8)
|
81 |
|
82 |
+
# Convert the image array to a Pillow (PIL) image
|
83 |
pred_img = Image.fromarray(pred_img)
|
84 |
|
85 |
return pred_img
|
86 |
|
87 |
+
# Define the Gradio interface
|
88 |
iface = gr.Interface(fn=sepia, inputs="image", outputs="image")
|
89 |
|
90 |
+
# Launch the Gradio app
|
91 |
iface.launch()
|