import gradio as gr from PIL import Image import numpy as np import tensorflow as tf from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation import os feature_extractor = SegformerFeatureExtractor.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [204, 87, 92], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89], [90, 180, 56], [155, 102, 200], [33, 147, 176], [255, 183, 76], [67, 123, 89], [190, 60, 45], [134, 112, 200], [56, 45, 189], [200, 56, 123], [87, 92, 204], [120, 56, 123], [45, 78, 123], [156, 200, 56] ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def sepia(input_text): # Check if the input text is a valid file path if not os.path.isfile(input_text): return "Invalid file path. Please enter a valid image file path." # Load the image using the input text (assumed to be a path to an image) input_img = Image.open(input_text) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize( logits, input_img.size[::-1] ) seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros( (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 ) for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) # Convert the image array to a Pillow (PIL) image pred_img = Image.fromarray(pred_img) return pred_img # Define the Gradio interface iface = gr.Interface(fn=sepia, inputs="image", outputs="image") # Launch the Gradio app iface.launch()