Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,204 Bytes
0022789 9148f31 0022789 9148f31 0022789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import spaces
import torch
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR", device_map="cpu")
if torch.cuda.is_available():
aura_sr.to("cuda")
@spaces.GPU
def process_image(input_image):
if input_image is None:
return None
# Resize input image to 256x256
input_image = Image.fromarray(input_array).resize((256, 256))
# Upscale the image using AuraSR
upscaled_image = aura_sr.upscale_4x(input_image)
# Convert result to numpy array
result_array = np.array(upscaled_image)
return [input_array, result_array]
with gr.Blocks() as demo:
gr.Markdown("# Image Upscaler using AuraSR")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="pil")
process_btn = gr.Button("Upscale Image")
with gr.Column(scale=1):
output_slider = ImageSlider(label="Before / After", type="numpy")
process_btn.click(
fn=process_image,
inputs=[input_image],
outputs=output_slider
)
demo.launch(debug=True) |