File size: 6,356 Bytes
eead421
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1238e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eead421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1238e
eead421
 
 
bd1238e
 
 
 
 
 
 
 
58cbf34
 
 
 
 
 
eead421
58cbf34
 
 
 
 
 
eead421
58cbf34
 
 
 
 
 
 
 
 
bd1238e
58cbf34
987d247
 
bd1238e
732db50
58cbf34
 
eead421
 
58cbf34
 
 
 
bd1238e
 
58cbf34
 
bd1238e
 
 
 
 
58cbf34
bd1238e
 
 
58cbf34
 
 
bd1238e
 
58cbf34
 
 
 
 
 
eead421
58cbf34
 
eead421
bd1238e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eead421
58cbf34
 
 
 
 
 
 
eead421
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import requests
from PIL import Image
import io
import os
from fal_client import submit

def set_fal_key(api_key):
    os.environ["FAL_KEY"] = api_key
    return "FAL API key set successfully!"

def generate_image(api_key, model, prompt, image_size, num_inference_steps, guidance_scale, num_images, safety_tolerance, enable_safety_checker, seed):
    set_fal_key(api_key)
    
    if model == "Flux Ultra":
        arguments = {
            "prompt": prompt,
            "num_images": num_images,
            "enable_safety_checker": enable_safety_checker,
            "safety_tolerance": safety_tolerance,
            "aspect_ratio": image_size  # For Ultra, we pass the aspect ratio directly
        }
        fal_model = "fal-ai/flux-pro/v1.1-ultra"
    else:
        # Original logic for other models
        arguments = {
            "prompt": prompt,
            "image_size": image_size,
            "num_inference_steps": num_inference_steps,
            "num_images": num_images,
        }
        
        if model == "Flux Pro":
            arguments["guidance_scale"] = guidance_scale
            arguments["safety_tolerance"] = safety_tolerance
            fal_model = "fal-ai/flux-pro"
        elif model == "Flux Dev":
            arguments["guidance_scale"] = guidance_scale
            arguments["enable_safety_checker"] = enable_safety_checker
            fal_model = "fal-ai/flux/dev"
        else:  # Flux Schnell
            arguments["enable_safety_checker"] = enable_safety_checker
            fal_model = "fal-ai/flux/schnell"

    if seed != -1:
        arguments["seed"] = seed

    try:
        handler = submit(fal_model, arguments=arguments)
        result = handler.get()
        images = []
        for img_info in result["images"]:
            img_url = img_info["url"]
            img_response = requests.get(img_url)
            img = Image.open(io.BytesIO(img_response.content))
            images.append(img)
        return images
    except Exception as e:
        print(f"Error: {str(e)}")
        return [Image.new('RGB', (512, 512), color='black')]

def update_visible_components(model):
    if model == "Flux Ultra":
        return [
            gr.update(visible=False),  # num_inference_steps not used in Ultra
            gr.update(visible=False),  # guidance_scale not used in Ultra
            gr.update(visible=True, value="2"),  # safety_tolerance
            gr.update(visible=True, value=True)  # enable_safety_checker
        ]
    elif model == "Flux Pro":
        return [
            gr.update(visible=True, value=28),
            gr.update(visible=True, value=3.5),
            gr.update(visible=True, value="2"),
            gr.update(visible=False)
        ]
    elif model == "Flux Dev":
        return [
            gr.update(visible=True, value=28),
            gr.update(visible=True, value=3.5),
            gr.update(visible=False),
            gr.update(visible=True, value=True)
        ]
    else:  # Flux Schnell
        return [
            gr.update(visible=True, value=4),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=True, value=True)
        ]

with gr.Blocks(theme='bethecloud/storj_theme') as demo:
    gr.HTML("""
    <h1 align="center">FLUX 1.1 Ultra Image Generation</h1>
    <p align="center">
    <a href="https://blackforestlabs.ai/" target="_blank">[Black Forest Labs]</a>
    <a href="https://blackforestlabs.ai/announcing-black-forest-labs/" target="_blank">[Blog]</a>
    <a href="https://fal.ai/models/fal-ai/flux-pro/v1.1-ultra" target="_blank">[FLUX 1.1 Ultra Model FAL]</a>
    <a href="https://fal.ai/dashboard/keys" target="_blank">[GET YOUR API KEY HERE]</a>
    </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            api_key = gr.Textbox(type="password", label="FAL API Key")
            model = gr.Dropdown(
                label="Model",
                choices=["Flux Ultra", "Flux Pro", "Flux Dev", "Flux Schnell"],
                value="Flux Ultra"
            )
            prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Add your prompt here")
            
            # Different aspect ratio options based on model
            ultra_sizes = ["21:9", "16:9", "4:3", "1:1", "3:4", "9:16", "9:21"]
            other_sizes = ["square_hd", "square", "portrait_4_3", "portrait_16_9", "landscape_4_3", "landscape_16_9"]
            
            image_size = gr.Dropdown(
                choices=ultra_sizes,
                label="Aspect Ratio",
                value="16:9"
            )
            
            with gr.Accordion("Advanced settings", open=False):
                num_inference_steps = gr.Slider(1, 100, 28, step=1, label="Number of Inference Steps", visible=False)
                guidance_scale = gr.Slider(0, 20, 3.5, step=0.1, label="Guidance Scale", visible=False)
                num_images = gr.Slider(1, 10, 1, step=1, label="Number of Images")
                safety_tolerance = gr.Dropdown(choices=["1", "2", "3", "4", "5", "6"], label="Safety Tolerance", value="2")
                enable_safety_checker = gr.Checkbox(label="Enable Safety Checker", value=True)
                seed = gr.Number(label="Seed", value=-1)

            generate_btn = gr.Button("Generate Image")

        with gr.Column(scale=1):
            output_gallery = gr.Gallery(label="Generated Images", elem_id="gallery", show_label=False)

    def update_model_options(model):
        if model == "Flux Ultra":
            return [
                gr.update(choices=ultra_sizes, value="16:9", label="Aspect Ratio"),
                *update_visible_components(model)
            ]
        else:
            return [
                gr.update(choices=other_sizes, value="landscape_16_9", label="Image Size"),
                *update_visible_components(model)
            ]

    model.change(
        update_model_options,
        inputs=[model],
        outputs=[image_size, num_inference_steps, guidance_scale, safety_tolerance, enable_safety_checker]
    )

    generate_btn.click(
        fn=generate_image,
        inputs=[
            api_key, model, prompt, image_size, num_inference_steps,
            guidance_scale, num_images, safety_tolerance, enable_safety_checker, seed
        ],
        outputs=[output_gallery]
    )

demo.launch()