Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Commit
•
025a281
1
Parent(s):
5dd8e5c
providers
Browse files- huggingface_inference_node.py +67 -17
- ui_components.py +33 -13
huggingface_inference_node.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1 |
import os
|
2 |
from openai import OpenAI
|
|
|
|
|
3 |
import re
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
|
7 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
8 |
|
9 |
-
class
|
10 |
def __init__(self):
|
11 |
-
self.
|
12 |
base_url="https://api-inference.huggingface.co/v1/",
|
13 |
api_key=huggingface_token,
|
14 |
)
|
|
|
15 |
self.prompts_dir = "./prompts"
|
16 |
os.makedirs(self.prompts_dir, exist_ok=True)
|
17 |
|
@@ -28,7 +31,7 @@ class HuggingFaceInferenceNode:
|
|
28 |
|
29 |
print(f"Prompt saved to {filename}")
|
30 |
|
31 |
-
def generate(self, input_text, happy_talk, compress, compression_level, poster, prompt_type, custom_base_prompt=""):
|
32 |
try:
|
33 |
default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
|
34 |
|
@@ -86,20 +89,67 @@ You are allowed to make up film and branding names, and do them like 80's, 90's
|
|
86 |
system_message = "You are a helpful assistant. Try your best to give the best response possible to the user."
|
87 |
user_message = f"{base_prompt}\nDescription: {input_text}"
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
|
|
103 |
|
104 |
# Clean up the output
|
105 |
if ": " in output:
|
|
|
1 |
import os
|
2 |
from openai import OpenAI
|
3 |
+
import anthropic
|
4 |
+
from groq import Groq
|
5 |
import re
|
6 |
from datetime import datetime
|
7 |
|
|
|
8 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
9 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
10 |
|
11 |
+
class LLMInferenceNode:
|
12 |
def __init__(self):
|
13 |
+
self.huggingface_client = OpenAI(
|
14 |
base_url="https://api-inference.huggingface.co/v1/",
|
15 |
api_key=huggingface_token,
|
16 |
)
|
17 |
+
self.groq_client = Groq(api_key=groq_api_key)
|
18 |
self.prompts_dir = "./prompts"
|
19 |
os.makedirs(self.prompts_dir, exist_ok=True)
|
20 |
|
|
|
31 |
|
32 |
print(f"Prompt saved to {filename}")
|
33 |
|
34 |
+
def generate(self, input_text, happy_talk, compress, compression_level, poster, prompt_type, custom_base_prompt="", provider="Hugging Face", api_key=None, model=None):
|
35 |
try:
|
36 |
default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene, including details about the film grain, color grading, and any artifacts or characteristics specific."""
|
37 |
|
|
|
89 |
system_message = "You are a helpful assistant. Try your best to give the best response possible to the user."
|
90 |
user_message = f"{base_prompt}\nDescription: {input_text}"
|
91 |
|
92 |
+
if provider == "Hugging Face":
|
93 |
+
response = self.huggingface_client.chat.completions.create(
|
94 |
+
model=model or "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
95 |
+
max_tokens=1024,
|
96 |
+
temperature=0.7,
|
97 |
+
top_p=0.95,
|
98 |
+
messages=[
|
99 |
+
{"role": "system", "content": system_message},
|
100 |
+
{"role": "user", "content": user_message}
|
101 |
+
],
|
102 |
+
)
|
103 |
+
output = response.choices[0].message.content.strip()
|
104 |
+
|
105 |
+
elif provider == "OpenAI":
|
106 |
+
openai_client = OpenAI(api_key=api_key)
|
107 |
+
response = openai_client.chat.completions.create(
|
108 |
+
model=model or "gpt-4",
|
109 |
+
max_tokens=1024,
|
110 |
+
temperature=0.7,
|
111 |
+
messages=[
|
112 |
+
{"role": "system", "content": system_message},
|
113 |
+
{"role": "user", "content": user_message}
|
114 |
+
],
|
115 |
+
)
|
116 |
+
output = response.choices[0].message.content.strip()
|
117 |
+
|
118 |
+
elif provider == "Anthropic":
|
119 |
+
anthropic_client = anthropic.Anthropic(api_key=api_key)
|
120 |
+
response = anthropic_client.messages.create(
|
121 |
+
model=model or "claude-3-5-sonnet-20240620",
|
122 |
+
max_tokens=1024,
|
123 |
+
temperature=0.7,
|
124 |
+
system=system_message,
|
125 |
+
messages=[
|
126 |
+
{
|
127 |
+
"role": "user",
|
128 |
+
"content": [
|
129 |
+
{
|
130 |
+
"type": "text",
|
131 |
+
"text": user_message
|
132 |
+
}
|
133 |
+
]
|
134 |
+
}
|
135 |
+
]
|
136 |
+
)
|
137 |
+
output = response.content[0].text
|
138 |
+
|
139 |
+
elif provider == "Groq":
|
140 |
+
response = self.groq_client.chat.completions.create(
|
141 |
+
model=model or "llama-3.1-70b-versatile",
|
142 |
+
max_tokens=1024,
|
143 |
+
temperature=0.7,
|
144 |
+
messages=[
|
145 |
+
{"role": "system", "content": system_message},
|
146 |
+
{"role": "user", "content": user_message}
|
147 |
+
],
|
148 |
+
)
|
149 |
+
output = response.choices[0].message.content.strip()
|
150 |
|
151 |
+
else:
|
152 |
+
raise ValueError(f"Unsupported provider: {provider}")
|
153 |
|
154 |
# Clean up the output
|
155 |
if ": " in output:
|
ui_components.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from prompt_generator import PromptGenerator
|
3 |
-
from huggingface_inference_node import
|
4 |
from caption_models import florence_caption, qwen_caption
|
5 |
import random
|
6 |
from prompt_generator import ARTFORM, PHOTO_TYPE, FEMALE_BODY_TYPES, MALE_BODY_TYPES, FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, ROLES, HAIRSTYLES, FEMALE_CLOTHING, MALE_CLOTHING, PLACE, LIGHTING, COMPOSITION, POSE, BACKGROUND, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM
|
@@ -20,7 +20,7 @@ selected_prompt_type = "happy" # Default value
|
|
20 |
|
21 |
def create_interface():
|
22 |
prompt_generator = PromptGenerator()
|
23 |
-
|
24 |
|
25 |
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
26 |
|
@@ -116,13 +116,17 @@ def create_interface():
|
|
116 |
interactive=True
|
117 |
)
|
118 |
custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
text_output = gr.Textbox(label="Generated Text", lines=10)
|
127 |
|
128 |
def create_caption(image, model):
|
@@ -180,16 +184,32 @@ def create_interface():
|
|
180 |
outputs=[output]
|
181 |
)
|
182 |
|
183 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
global selected_prompt_type
|
185 |
print(f"Prompt type selected in UI: {selected_prompt_type}") # Debug print
|
186 |
-
return
|
187 |
|
188 |
generate_text_button.click(
|
189 |
generate_text_with_llm,
|
190 |
-
inputs=[output, happy_talk, compress, compression_level, custom_base_prompt],
|
191 |
outputs=text_output,
|
192 |
-
api_name="generate_text"
|
193 |
)
|
194 |
|
195 |
# Add this line to disable caching for the generate_text_with_llm function
|
|
|
1 |
import gradio as gr
|
2 |
from prompt_generator import PromptGenerator
|
3 |
+
from huggingface_inference_node import LLMInferenceNode
|
4 |
from caption_models import florence_caption, qwen_caption
|
5 |
import random
|
6 |
from prompt_generator import ARTFORM, PHOTO_TYPE, FEMALE_BODY_TYPES, MALE_BODY_TYPES, FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, ROLES, HAIRSTYLES, FEMALE_CLOTHING, MALE_CLOTHING, PLACE, LIGHTING, COMPOSITION, POSE, BACKGROUND, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM
|
|
|
20 |
|
21 |
def create_interface():
|
22 |
prompt_generator = PromptGenerator()
|
23 |
+
llm_node = LLMInferenceNode()
|
24 |
|
25 |
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
26 |
|
|
|
116 |
interactive=True
|
117 |
)
|
118 |
custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
|
119 |
+
|
120 |
+
# Add new components for LLM provider selection
|
121 |
+
llm_provider = gr.Dropdown(
|
122 |
+
choices=["Hugging Face", "OpenAI", "Anthropic", "Groq"],
|
123 |
+
label="LLM Provider",
|
124 |
+
value="Hugging Face"
|
125 |
+
)
|
126 |
+
api_key = gr.Textbox(label="API Key", type="password", visible=False)
|
127 |
+
model = gr.Dropdown(label="Model", choices=["meta-llama/Meta-Llama-3.1-70B-Instruct"], value="meta-llama/Meta-Llama-3.1-70B-Instruct")
|
128 |
+
|
129 |
+
generate_text_button = gr.Button("Generate Prompt with LLM")
|
130 |
text_output = gr.Textbox(label="Generated Text", lines=10)
|
131 |
|
132 |
def create_caption(image, model):
|
|
|
184 |
outputs=[output]
|
185 |
)
|
186 |
|
187 |
+
def update_model_choices(provider):
|
188 |
+
provider_models = {
|
189 |
+
"Hugging Face": ["meta-llama/Meta-Llama-3.1-70B-Instruct"],
|
190 |
+
"Groq": ["llama-3.1-70b-versatile"],
|
191 |
+
"OpenAI": ["gpt-4o", "gpt-4o-mini"],
|
192 |
+
"Anthropic": ["claude-3-5-sonnet-20240620"],
|
193 |
+
}
|
194 |
+
models = provider_models[provider]
|
195 |
+
return gr.Dropdown(choices=models, value=models[0])
|
196 |
+
|
197 |
+
def update_api_key_visibility(provider):
|
198 |
+
return gr.update(visible=(provider in ["OpenAI", "Anthropic"]))
|
199 |
+
|
200 |
+
llm_provider.change(update_model_choices, inputs=[llm_provider], outputs=[model])
|
201 |
+
llm_provider.change(update_api_key_visibility, inputs=[llm_provider], outputs=[api_key])
|
202 |
+
|
203 |
+
def generate_text_with_llm(output, happy_talk, compress, compression_level, custom_base_prompt, provider, api_key, model):
|
204 |
global selected_prompt_type
|
205 |
print(f"Prompt type selected in UI: {selected_prompt_type}") # Debug print
|
206 |
+
return llm_node.generate(output, happy_talk, compress, compression_level, False, selected_prompt_type, custom_base_prompt, provider, api_key, model)
|
207 |
|
208 |
generate_text_button.click(
|
209 |
generate_text_with_llm,
|
210 |
+
inputs=[output, happy_talk, compress, compression_level, custom_base_prompt, llm_provider, api_key, model],
|
211 |
outputs=text_output,
|
212 |
+
api_name="generate_text"
|
213 |
)
|
214 |
|
215 |
# Add this line to disable caching for the generate_text_with_llm function
|