import gradio as gr from transformers import AutoProcessor, AutoModelForCausalLM import spaces from PIL import Image import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) models = { 'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True).eval(), 'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True).eval(), } processors = { 'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux-Large', trust_remote_code=True), 'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained('gokaygokay/Florence-2-Flux', trust_remote_code=True), } title = """

Florence-2 Captioner for Flux Prompts

[Florence-2 Flux Large] [Florence-2 Flux Base]

""" @spaces.GPU def run_example(image, model_name='gokaygokay/Florence-2-Flux-Large'): image = Image.fromarray(image) task_prompt = "" prompt = task_prompt + "Describe this image in great detail." if image.mode != "RGB": image = image.convert("RGB") model = models[model_name] processor = processors[model_name] inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3, repetition_penalty=1.10, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) return parsed_answer[""] with gr.Blocks(theme='bethecloud/storj_theme') as demo: gr.HTML(title) with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='gokaygokay/Florence-2-Flux-Large') submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") gr.Examples( [["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image5.jpg"]], inputs=[input_img, model_selector], outputs=[output_text], fn=run_example, label='Try captioning on below examples', cache_examples=True ) submit_btn.click(run_example, [input_img, model_selector], [output_text]) demo.launch(debug=True)