Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import torch | |
import random | |
from huggingface_hub import snapshot_download | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from diffusers import UNet2DConditionModel, AutoencoderKL | |
from diffusers import EulerDiscreteScheduler | |
import gradio as gr | |
# Download the model files | |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
# Load the models | |
text_encoder = ChatGLMModel.from_pretrained( | |
os.path.join(ckpt_dir, 'text_encoder'), | |
torch_dtype=torch.float16).half() | |
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder')) | |
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).half() | |
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler")) | |
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).half() | |
pipe = StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=False) | |
pipe = pipe.to("cuda") | |
pipe.enable_model_cpu_offload() | |
def generate_image(prompt, height, width, num_inference_steps, guidance_scale): | |
seed = random.randint(0, 18446744073709551615) | |
image = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=torch.Generator(pipe.device).manual_seed(seed) | |
).images[0] | |
return image, seed | |
# Gradio interface | |
iface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Slider(512, 1024, 1024, step=64, label="Height"), | |
gr.Slider(512, 1024, 1024, step=64, label="Width"), | |
gr.Slider(20, 100, 50, step=1, label="Number of Inference Steps"), | |
gr.Slider(1, 20, 5, step=0.5, label="Guidance Scale"), | |
], | |
outputs=[ | |
gr.Image(label="Generated Image"), | |
gr.Number(label="Seed") | |
], | |
title="Kolors Stable Diffusion XL Image Generator", | |
description="Generate images using the Kolors Stable Diffusion XL model." | |
) | |
iface.launch(debug=True) |