Spaces:
Running
on
Zero
Running
on
Zero
""" PyTorch ChatGLM model. """ | |
import math | |
import copy | |
import warnings | |
import re | |
import sys | |
import torch | |
import torch.utils.checkpoint | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, LayerNorm | |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss | |
from torch.nn.utils import skip_init | |
from typing import Optional, Tuple, Union, List, Callable, Dict, Any | |
from copy import deepcopy | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from transformers.generation.logits_process import LogitsProcessor | |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput | |
try: | |
from .configuration_chatglm import ChatGLMConfig | |
except: | |
from configuration_chatglm import ChatGLMConfig | |
# flags required to enable jit fusion kernels | |
if sys.platform != 'darwin': | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_override_can_fuse_on_cpu(True) | |
torch._C._jit_override_can_fuse_on_gpu(True) | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM" | |
_CONFIG_FOR_DOC = "ChatGLM6BConfig" | |
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"THUDM/chatglm3-6b-base", | |
# See all ChatGLM models at https://huggingface.co/models?filter=chatglm | |
] | |
def default_init(cls, *args, **kwargs): | |
return cls(*args, **kwargs) | |
class InvalidScoreLogitsProcessor(LogitsProcessor): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: | |
if torch.isnan(scores).any() or torch.isinf(scores).any(): | |
scores.zero_() | |
scores[..., 5] = 5e4 | |
return scores | |
class PrefixEncoder(torch.nn.Module): | |
""" | |
The torch.nn model to encode the prefix | |
Input shape: (batch-size, prefix-length) | |
Output shape: (batch-size, prefix-length, 2*layers*hidden) | |
""" | |
def __init__(self, config: ChatGLMConfig): | |
super().__init__() | |
self.prefix_projection = config.prefix_projection | |
if self.prefix_projection: | |
# Use a two-layer MLP to encode the prefix | |
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2 | |
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) | |
self.trans = torch.nn.Sequential( | |
torch.nn.Linear(kv_size, config.hidden_size), | |
torch.nn.Tanh(), | |
torch.nn.Linear(config.hidden_size, kv_size) | |
) | |
else: | |
self.embedding = torch.nn.Embedding(config.pre_seq_len, | |
config.num_layers * config.kv_channels * config.multi_query_group_num * 2) | |
def forward(self, prefix: torch.Tensor): | |
if self.prefix_projection: | |
prefix_tokens = self.embedding(prefix) | |
past_key_values = self.trans(prefix_tokens) | |
else: | |
past_key_values = self.embedding(prefix) | |
return past_key_values | |
def split_tensor_along_last_dim( | |
tensor: torch.Tensor, | |
num_partitions: int, | |
contiguous_split_chunks: bool = False, | |
) -> List[torch.Tensor]: | |
"""Split a tensor along its last dimension. | |
Arguments: | |
tensor: input tensor. | |
num_partitions: number of partitions to split the tensor | |
contiguous_split_chunks: If True, make each chunk contiguous | |
in memory. | |
Returns: | |
A list of Tensors | |
""" | |
# Get the size and dimension. | |
last_dim = tensor.dim() - 1 | |
last_dim_size = tensor.size()[last_dim] // num_partitions | |
# Split. | |
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | |
# Note: torch.split does not create contiguous tensors by default. | |
if contiguous_split_chunks: | |
return tuple(chunk.contiguous() for chunk in tensor_list) | |
return tensor_list | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim, original_impl=False, device=None, dtype=None): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self.dim = dim | |
self.original_impl = original_impl | |
def forward_impl( | |
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 | |
): | |
"""Enhanced Transformer with Rotary Position Embedding. | |
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ | |
transformers/rope/__init__.py. MIT License: | |
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. | |
""" | |
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ | |
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem)) | |
# Create position indexes `[0, 1, ..., seq_len - 1]` | |
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) | |
# Calculate the product of position index and $\theta_i$ | |
idx_theta = torch.outer(seq_idx, theta).float() | |
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) | |
# this is to mimic the behaviour of complex32, else we will get different results | |
if dtype in (torch.float16, torch.bfloat16, torch.int8): | |
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() | |
return cache | |
def forward(self, max_seq_len, offset=0): | |
return self.forward_impl( | |
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device | |
) | |
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: | |
# x: [sq, b, np, hn] | |
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3) | |
rot_dim = rope_cache.shape[-2] * 2 | |
x, x_pass = x[..., :rot_dim], x[..., rot_dim:] | |
# truncate to support variable sizes | |
rope_cache = rope_cache[:sq] | |
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) | |
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) | |
x_out2 = torch.stack( | |
[ | |
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], | |
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], | |
], | |
-1, | |
) | |
x_out2 = x_out2.flatten(3) | |
return torch.cat((x_out2, x_pass), dim=-1) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): | |
super().__init__() | |
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) | |
self.eps = eps | |
def forward(self, hidden_states: torch.Tensor): | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
return (self.weight * hidden_states).to(input_dtype) | |
class CoreAttention(torch.nn.Module): | |
def __init__(self, config: ChatGLMConfig, layer_number): | |
super(CoreAttention, self).__init__() | |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling | |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 | |
if self.apply_query_key_layer_scaling: | |
self.attention_softmax_in_fp32 = True | |
self.layer_number = max(1, layer_number) | |
projection_size = config.kv_channels * config.num_attention_heads | |
# Per attention head and per partition values. | |
self.hidden_size_per_partition = projection_size | |
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads | |
self.num_attention_heads_per_partition = config.num_attention_heads | |
coeff = None | |
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) | |
if self.apply_query_key_layer_scaling: | |
coeff = self.layer_number | |
self.norm_factor *= coeff | |
self.coeff = coeff | |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) | |
def forward(self, query_layer, key_layer, value_layer, attention_mask): | |
pytorch_major_version = int(torch.__version__.split('.')[0]) | |
if pytorch_major_version >= 2: | |
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]] | |
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: | |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, | |
is_causal=True) | |
else: | |
if attention_mask is not None: | |
attention_mask = ~attention_mask | |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, | |
attention_mask) | |
context_layer = context_layer.permute(2, 0, 1, 3) | |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) | |
context_layer = context_layer.reshape(*new_context_layer_shape) | |
else: | |
# Raw attention scores | |
# [b, np, sq, sk] | |
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) | |
# [sq, b, np, hn] -> [sq, b * np, hn] | |
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) | |
# [sk, b, np, hn] -> [sk, b * np, hn] | |
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) | |
# preallocting input tensor: [b * np, sq, sk] | |
matmul_input_buffer = torch.empty( | |
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, | |
device=query_layer.device | |
) | |
# Raw attention scores. [b * np, sq, sk] | |
matmul_result = torch.baddbmm( | |
matmul_input_buffer, | |
query_layer.transpose(0, 1), # [b * np, sq, hn] | |
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] | |
beta=0.0, | |
alpha=(1.0 / self.norm_factor), | |
) | |
# change view to [b, np, sq, sk] | |
attention_scores = matmul_result.view(*output_size) | |
# =========================== | |
# Attention probs and dropout | |
# =========================== | |
# attention scores and attention mask [b, np, sq, sk] | |
if self.attention_softmax_in_fp32: | |
attention_scores = attention_scores.float() | |
if self.coeff is not None: | |
attention_scores = attention_scores * self.coeff | |
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: | |
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], | |
device=attention_scores.device, dtype=torch.bool) | |
attention_mask.tril_() | |
attention_mask = ~attention_mask | |
if attention_mask is not None: | |
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) | |
attention_probs = F.softmax(attention_scores, dim=-1) | |
attention_probs = attention_probs.type_as(value_layer) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.attention_dropout(attention_probs) | |
# ========================= | |
# Context layer. [sq, b, hp] | |
# ========================= | |
# value_layer -> context layer. | |
# [sk, b, np, hn] --> [b, np, sq, hn] | |
# context layer shape: [b, np, sq, hn] | |
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) | |
# change view [sk, b * np, hn] | |
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) | |
# change view [b * np, sq, sk] | |
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) | |
# matmul: [b * np, sq, hn] | |
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) | |
# change view [b, np, sq, hn] | |
context_layer = context_layer.view(*output_size) | |
# [b, np, sq, hn] --> [sq, b, np, hn] | |
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() | |
# [sq, b, np, hn] --> [sq, b, hp] | |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer | |
class SelfAttention(torch.nn.Module): | |
"""Parallel self-attention layer abstract class. | |
Self-attention layer takes input with size [s, b, h] | |
and returns output of the same size. | |
""" | |
def __init__(self, config: ChatGLMConfig, layer_number, device=None): | |
super(SelfAttention, self).__init__() | |
self.layer_number = max(1, layer_number) | |
self.projection_size = config.kv_channels * config.num_attention_heads | |
# Per attention head and per partition values. | |
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads | |
self.num_attention_heads_per_partition = config.num_attention_heads | |
self.multi_query_attention = config.multi_query_attention | |
self.qkv_hidden_size = 3 * self.projection_size | |
if self.multi_query_attention: | |
self.num_multi_query_groups_per_partition = config.multi_query_group_num | |
self.qkv_hidden_size = ( | |
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num | |
) | |
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size, | |
bias=config.add_bias_linear or config.add_qkv_bias, | |
device=device, **_config_to_kwargs(config) | |
) | |
self.core_attention = CoreAttention(config, self.layer_number) | |
# Output. | |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, | |
device=device, **_config_to_kwargs(config) | |
) | |
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): | |
if self.multi_query_attention: | |
num_attention_heads = self.num_multi_query_groups_per_partition | |
else: | |
num_attention_heads = self.num_attention_heads_per_partition | |
return torch.empty( | |
inference_max_sequence_len, | |
batch_size, | |
num_attention_heads, | |
self.hidden_size_per_attention_head, | |
dtype=dtype, | |
device=device, | |
) | |
def forward( | |
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True | |
): | |
# hidden_states: [sq, b, h] | |
# ================================================= | |
# Pre-allocate memory for key-values for inference. | |
# ================================================= | |
# ===================== | |
# Query, Key, and Value | |
# ===================== | |
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)] | |
mixed_x_layer = self.query_key_value(hidden_states) | |
if self.multi_query_attention: | |
(query_layer, key_layer, value_layer) = mixed_x_layer.split( | |
[ | |
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, | |
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | |
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | |
], | |
dim=-1, | |
) | |
query_layer = query_layer.view( | |
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | |
) | |
key_layer = key_layer.view( | |
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | |
) | |
value_layer = value_layer.view( | |
value_layer.size()[:-1] | |
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | |
) | |
else: | |
new_tensor_shape = mixed_x_layer.size()[:-1] + \ | |
(self.num_attention_heads_per_partition, | |
3 * self.hidden_size_per_attention_head) | |
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | |
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] | |
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) | |
# apply relative positional encoding (rotary embedding) | |
if rotary_pos_emb is not None: | |
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) | |
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) | |
# adjust key and value for inference | |
if kv_cache is not None: | |
cache_k, cache_v = kv_cache | |
key_layer = torch.cat((cache_k, key_layer), dim=0) | |
value_layer = torch.cat((cache_v, value_layer), dim=0) | |
if use_cache: | |
kv_cache = (key_layer, value_layer) | |
else: | |
kv_cache = None | |
if self.multi_query_attention: | |
key_layer = key_layer.unsqueeze(-2) | |
key_layer = key_layer.expand( | |
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1 | |
) | |
key_layer = key_layer.contiguous().view( | |
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | |
) | |
value_layer = value_layer.unsqueeze(-2) | |
value_layer = value_layer.expand( | |
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1 | |
) | |
value_layer = value_layer.contiguous().view( | |
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | |
) | |
# ================================== | |
# core attention computation | |
# ================================== | |
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) | |
# ================= | |
# Output. [sq, b, h] | |
# ================= | |
output = self.dense(context_layer) | |
return output, kv_cache | |
def _config_to_kwargs(args): | |
common_kwargs = { | |
"dtype": args.torch_dtype, | |
} | |
return common_kwargs | |
class MLP(torch.nn.Module): | |
"""MLP. | |
MLP will take the input with h hidden state, project it to 4*h | |
hidden dimension, perform nonlinear transformation, and project the | |
state back into h hidden dimension. | |
""" | |
def __init__(self, config: ChatGLMConfig, device=None): | |
super(MLP, self).__init__() | |
self.add_bias = config.add_bias_linear | |
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf | |
self.dense_h_to_4h = nn.Linear( | |
config.hidden_size, | |
config.ffn_hidden_size * 2, | |
bias=self.add_bias, | |
device=device, | |
**_config_to_kwargs(config) | |
) | |
def swiglu(x): | |
x = torch.chunk(x, 2, dim=-1) | |
return F.silu(x[0]) * x[1] | |
self.activation_func = swiglu | |
# Project back to h. | |
self.dense_4h_to_h = nn.Linear( | |
config.ffn_hidden_size, | |
config.hidden_size, | |
bias=self.add_bias, | |
device=device, | |
**_config_to_kwargs(config) | |
) | |
def forward(self, hidden_states): | |
# [s, b, 4hp] | |
intermediate_parallel = self.dense_h_to_4h(hidden_states) | |
intermediate_parallel = self.activation_func(intermediate_parallel) | |
# [s, b, h] | |
output = self.dense_4h_to_h(intermediate_parallel) | |
return output | |
class GLMBlock(torch.nn.Module): | |
"""A single transformer layer. | |
Transformer layer takes input with size [s, b, h] and returns an | |
output of the same size. | |
""" | |
def __init__(self, config: ChatGLMConfig, layer_number, device=None): | |
super(GLMBlock, self).__init__() | |
self.layer_number = layer_number | |
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
self.fp32_residual_connection = config.fp32_residual_connection | |
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm | |
# Layernorm on the input data. | |
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, | |
dtype=config.torch_dtype) | |
# Self attention. | |
self.self_attention = SelfAttention(config, layer_number, device=device) | |
self.hidden_dropout = config.hidden_dropout | |
# Layernorm on the attention output | |
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, | |
dtype=config.torch_dtype) | |
# MLP | |
self.mlp = MLP(config, device=device) | |
def forward( | |
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, | |
): | |
# hidden_states: [s, b, h] | |
# Layer norm at the beginning of the transformer layer. | |
layernorm_output = self.input_layernorm(hidden_states) | |
# Self attention. | |
attention_output, kv_cache = self.self_attention( | |
layernorm_output, | |
attention_mask, | |
rotary_pos_emb, | |
kv_cache=kv_cache, | |
use_cache=use_cache | |
) | |
# Residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = hidden_states | |
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training) | |
layernorm_input = residual + layernorm_input | |
# Layer norm post the self attention. | |
layernorm_output = self.post_attention_layernorm(layernorm_input) | |
# MLP. | |
mlp_output = self.mlp(layernorm_output) | |
# Second residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = layernorm_input | |
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training) | |
output = residual + output | |
return output, kv_cache | |
class GLMTransformer(torch.nn.Module): | |
"""Transformer class.""" | |
def __init__(self, config: ChatGLMConfig, device=None): | |
super(GLMTransformer, self).__init__() | |
self.fp32_residual_connection = config.fp32_residual_connection | |
self.post_layer_norm = config.post_layer_norm | |
# Number of layers. | |
self.num_layers = config.num_layers | |
# Transformer layers. | |
def build_layer(layer_number): | |
return GLMBlock(config, layer_number, device=device) | |
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)]) | |
if self.post_layer_norm: | |
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm | |
# Final layer norm before output. | |
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, | |
dtype=config.torch_dtype) | |
self.gradient_checkpointing = False | |
def _get_layer(self, layer_number): | |
return self.layers[layer_number] | |
def forward( | |
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, | |
use_cache: Optional[bool] = True, | |
output_hidden_states: Optional[bool] = False, | |
): | |
if not kv_caches: | |
kv_caches = [None for _ in range(self.num_layers)] | |
presents = () if use_cache else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
all_self_attentions = None | |
all_hidden_states = () if output_hidden_states else None | |
for index in range(self.num_layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer = self._get_layer(index) | |
if self.gradient_checkpointing and self.training: | |
layer_ret = torch.utils.checkpoint.checkpoint( | |
layer, | |
hidden_states, | |
attention_mask, | |
rotary_pos_emb, | |
kv_caches[index], | |
use_cache | |
) | |
else: | |
layer_ret = layer( | |
hidden_states, | |
attention_mask, | |
rotary_pos_emb, | |
kv_cache=kv_caches[index], | |
use_cache=use_cache | |
) | |
hidden_states, kv_cache = layer_ret | |
if use_cache: | |
presents = presents + (kv_cache,) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# Final layer norm. | |
if self.post_layer_norm: | |
hidden_states = self.final_layernorm(hidden_states) | |
return hidden_states, presents, all_hidden_states, all_self_attentions | |
class ChatGLMPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
is_parallelizable = False | |
supports_gradient_checkpointing = True | |
config_class = ChatGLMConfig | |
base_model_prefix = "transformer" | |
_no_split_modules = ["GLMBlock"] | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights.""" | |
return | |
def get_masks(self, input_ids, past_key_values, padding_mask=None): | |
batch_size, seq_length = input_ids.shape | |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) | |
full_attention_mask.tril_() | |
past_length = 0 | |
if past_key_values: | |
past_length = past_key_values[0][0].shape[0] | |
if past_length: | |
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, | |
device=input_ids.device), full_attention_mask), dim=-1) | |
if padding_mask is not None: | |
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) | |
if not past_length and padding_mask is not None: | |
full_attention_mask -= padding_mask.unsqueeze(-1) - 1 | |
full_attention_mask = (full_attention_mask < 0.5).bool() | |
full_attention_mask.unsqueeze_(1) | |
return full_attention_mask | |
def get_position_ids(self, input_ids, device): | |
batch_size, seq_length = input_ids.shape | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) | |
return position_ids | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, GLMTransformer): | |
module.gradient_checkpointing = value | |
class Embedding(torch.nn.Module): | |
"""Language model embeddings.""" | |
def __init__(self, config: ChatGLMConfig, device=None): | |
super(Embedding, self).__init__() | |
self.hidden_size = config.hidden_size | |
# Word embeddings (parallel). | |
self.word_embeddings = nn.Embedding( | |
config.padded_vocab_size, | |
self.hidden_size, | |
dtype=config.torch_dtype, | |
device=device | |
) | |
self.fp32_residual_connection = config.fp32_residual_connection | |
def forward(self, input_ids): | |
# Embeddings. | |
words_embeddings = self.word_embeddings(input_ids) | |
embeddings = words_embeddings | |
# Data format change to avoid explicit tranposes : [b s h] --> [s b h]. | |
embeddings = embeddings.transpose(0, 1).contiguous() | |
# If the input flag for fp32 residual connection is set, convert for float. | |
if self.fp32_residual_connection: | |
embeddings = embeddings.float() | |
return embeddings | |
class ChatGLMModel(ChatGLMPreTrainedModel): | |
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): | |
super().__init__(config) | |
if empty_init: | |
init_method = skip_init | |
else: | |
init_method = default_init | |
init_kwargs = {} | |
if device is not None: | |
init_kwargs["device"] = device | |
self.embedding = init_method(Embedding, config, **init_kwargs) | |
self.num_layers = config.num_layers | |
self.multi_query_group_num = config.multi_query_group_num | |
self.kv_channels = config.kv_channels | |
# Rotary positional embeddings | |
self.seq_length = config.seq_length | |
rotary_dim = ( | |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels | |
) | |
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device, | |
dtype=config.torch_dtype) | |
self.encoder = init_method(GLMTransformer, config, **init_kwargs) | |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, | |
dtype=config.torch_dtype, **init_kwargs) | |
self.pre_seq_len = config.pre_seq_len | |
self.prefix_projection = config.prefix_projection | |
if self.pre_seq_len is not None: | |
for param in self.parameters(): | |
param.requires_grad = False | |
self.prefix_tokens = torch.arange(self.pre_seq_len).long() | |
self.prefix_encoder = PrefixEncoder(config) | |
self.dropout = torch.nn.Dropout(0.1) | |
def get_input_embeddings(self): | |
return self.embedding.word_embeddings | |
def get_prompt(self, batch_size, device, dtype=torch.half): | |
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) | |
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) | |
past_key_values = past_key_values.view( | |
batch_size, | |
self.pre_seq_len, | |
self.num_layers * 2, | |
self.multi_query_group_num, | |
self.kv_channels | |
) | |
# seq_len, b, nh, hidden_size | |
past_key_values = self.dropout(past_key_values) | |
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) | |
return past_key_values | |
def forward( | |
self, | |
input_ids, | |
position_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
full_attention_mask: Optional[torch.BoolTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
batch_size, seq_length = input_ids.shape | |
if inputs_embeds is None: | |
inputs_embeds = self.embedding(input_ids) | |
if self.pre_seq_len is not None: | |
if past_key_values is None: | |
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device, | |
dtype=inputs_embeds.dtype) | |
if attention_mask is not None: | |
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), | |
attention_mask], dim=-1) | |
if full_attention_mask is None: | |
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): | |
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) | |
# Rotary positional embeddings | |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) | |
if position_ids is not None: | |
rotary_pos_emb = rotary_pos_emb[position_ids] | |
else: | |
rotary_pos_emb = rotary_pos_emb[None, :seq_length] | |
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() | |
# Run encoder. | |
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( | |
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, | |
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states | |
) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
def quantize(self, weight_bit_width: int): | |
from .quantization import quantize | |
quantize(self.encoder, weight_bit_width) | |
return self | |
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): | |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): | |
super().__init__(config) | |
self.max_sequence_length = config.max_length | |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) | |
self.config = config | |
self.quantized = False | |
if self.config.quantization_bit: | |
self.quantize(self.config.quantization_bit, empty_init=True) | |
def _update_model_kwargs_for_generation( | |
self, | |
outputs: ModelOutput, | |
model_kwargs: Dict[str, Any], | |
is_encoder_decoder: bool = False, | |
standardize_cache_format: bool = False, | |
) -> Dict[str, Any]: | |
# update past_key_values | |
model_kwargs["past_key_values"] = self._extract_past_from_model_output( | |
outputs, standardize_cache_format=standardize_cache_format | |
) | |
# update attention mask | |
if "attention_mask" in model_kwargs: | |
attention_mask = model_kwargs["attention_mask"] | |
model_kwargs["attention_mask"] = torch.cat( | |
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 | |
) | |
# update position ids | |
if "position_ids" in model_kwargs: | |
position_ids = model_kwargs["position_ids"] | |
new_position_id = position_ids[..., -1:].clone() | |
new_position_id += 1 | |
model_kwargs["position_ids"] = torch.cat( | |
[position_ids, new_position_id], dim=-1 | |
) | |
model_kwargs["is_first_forward"] = False | |
return model_kwargs | |
def prepare_inputs_for_generation( | |
self, | |
input_ids: torch.LongTensor, | |
past_key_values: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
is_first_forward: bool = True, | |
**kwargs | |
) -> dict: | |
# only last token for input_ids if past is not None | |
if position_ids is None: | |
position_ids = self.get_position_ids(input_ids, device=input_ids.device) | |
if not is_first_forward: | |
if past_key_values is not None: | |
position_ids = position_ids[..., -1:] | |
input_ids = input_ids[:, -1:] | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"return_last_logit": True, | |
"use_cache": use_cache | |
} | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
return_last_logit: Optional[bool] = False, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
if return_last_logit: | |
hidden_states = hidden_states[-1:] | |
lm_logits = self.transformer.output_layer(hidden_states) | |
lm_logits = lm_logits.transpose(0, 1).contiguous() | |
loss = None | |
if labels is not None: | |
lm_logits = lm_logits.to(torch.float32) | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
lm_logits = lm_logits.to(hidden_states.dtype) | |
loss = loss.to(hidden_states.dtype) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
Output shares the same memory storage as `past`. | |
""" | |
return tuple( | |
( | |
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), | |
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), | |
) | |
for layer_past in past | |
) | |
def process_response(self, output, history): | |
content = "" | |
history = deepcopy(history) | |
for response in output.split("<|assistant|>"): | |
metadata, content = response.split("\n", maxsplit=1) | |
if not metadata.strip(): | |
content = content.strip() | |
history.append({"role": "assistant", "metadata": metadata, "content": content}) | |
content = content.replace("[[训练时间]]", "2023年") | |
else: | |
history.append({"role": "assistant", "metadata": metadata, "content": content}) | |
if history[0]["role"] == "system" and "tools" in history[0]: | |
content = "\n".join(content.split("\n")[1:-1]) | |
def tool_call(**kwargs): | |
return kwargs | |
parameters = eval(content) | |
content = {"name": metadata.strip(), "parameters": parameters} | |
else: | |
content = {"name": metadata.strip(), "content": content} | |
return content, history | |
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user", | |
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, | |
**kwargs): | |
if history is None: | |
history = [] | |
if logits_processor is None: | |
logits_processor = LogitsProcessorList() | |
logits_processor.append(InvalidScoreLogitsProcessor()) | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, | |
"temperature": temperature, "logits_processor": logits_processor, **kwargs} | |
inputs = tokenizer.build_chat_input(query, history=history, role=role) | |
inputs = inputs.to(self.device) | |
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), | |
tokenizer.get_command("<|observation|>")] | |
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id) | |
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] | |
response = tokenizer.decode(outputs) | |
history.append({"role": role, "content": query}) | |
response, history = self.process_response(response, history) | |
return response, history | |
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user", | |
past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, | |
logits_processor=None, return_past_key_values=False, **kwargs): | |
if history is None: | |
history = [] | |
if logits_processor is None: | |
logits_processor = LogitsProcessorList() | |
logits_processor.append(InvalidScoreLogitsProcessor()) | |
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), | |
tokenizer.get_command("<|observation|>")] | |
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p, | |
"temperature": temperature, "logits_processor": logits_processor, **kwargs} | |
if past_key_values is None: | |
inputs = tokenizer.build_chat_input(query, history=history, role=role) | |
else: | |
inputs = tokenizer.build_chat_input(query, role=role) | |
inputs = inputs.to(self.device) | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[0] | |
if self.transformer.pre_seq_len is not None: | |
past_length -= self.transformer.pre_seq_len | |
inputs.position_ids += past_length | |
attention_mask = inputs.attention_mask | |
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1) | |
inputs['attention_mask'] = attention_mask | |
history.append({"role": role, "content": query}) | |
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values, | |
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values, | |
**gen_kwargs): | |
if return_past_key_values: | |
outputs, past_key_values = outputs | |
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] | |
response = tokenizer.decode(outputs) | |
if response and response[-1] != "�": | |
response, new_history = self.process_response(response, history) | |
if return_past_key_values: | |
yield response, new_history, past_key_values | |
else: | |
yield response, new_history | |
def stream_generate( | |
self, | |
input_ids, | |
generation_config: Optional[GenerationConfig] = None, | |
logits_processor: Optional[LogitsProcessorList] = None, | |
stopping_criteria: Optional[StoppingCriteriaList] = None, | |
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, | |
return_past_key_values=False, | |
**kwargs, | |
): | |
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) | |
model_kwargs["use_cache"] = generation_config.use_cache | |
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id | |
if isinstance(eos_token_id, int): | |
eos_token_id = [eos_token_id] | |
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
if has_default_max_length and generation_config.max_new_tokens is None: | |
warnings.warn( | |
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " | |
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" | |
" recommend using `max_new_tokens` to control the maximum length of the generation.", | |
UserWarning, | |
) | |
elif generation_config.max_new_tokens is not None: | |
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length | |
if not has_default_max_length: | |
logger.warn( | |
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" | |
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " | |
"Please refer to the documentation for more information. " | |
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", | |
UserWarning, | |
) | |
if input_ids_seq_length >= generation_config.max_length: | |
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" | |
logger.warning( | |
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" | |
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" | |
" increasing `max_new_tokens`." | |
) | |
# 2. Set generation parameters if not already defined | |
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() | |
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() | |
logits_processor = self._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_seq_length, | |
encoder_input_ids=input_ids, | |
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, | |
logits_processor=logits_processor, | |
) | |
stopping_criteria = self._get_stopping_criteria( | |
generation_config=generation_config, stopping_criteria=stopping_criteria | |
) | |
logits_warper = self._get_logits_warper(generation_config) | |
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) | |
scores = None | |
while True: | |
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) | |
# forward pass to get next token | |
outputs = self( | |
**model_inputs, | |
return_dict=True, | |
output_attentions=False, | |
output_hidden_states=False, | |
) | |
next_token_logits = outputs.logits[:, -1, :] | |
# pre-process distribution | |
next_token_scores = logits_processor(input_ids, next_token_logits) | |
next_token_scores = logits_warper(input_ids, next_token_scores) | |
# sample | |
probs = nn.functional.softmax(next_token_scores, dim=-1) | |
if generation_config.do_sample: | |
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) | |
else: | |
next_tokens = torch.argmax(probs, dim=-1) | |
# update generated ids, model inputs, and length for next step | |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) | |
model_kwargs = self._update_model_kwargs_for_generation( | |
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder | |
) | |
unfinished_sequences = unfinished_sequences.mul( | |
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) | |
) | |
if return_past_key_values: | |
yield input_ids, outputs.past_key_values | |
else: | |
yield input_ids | |
# stop when each sentence is finished, or if we exceed the maximum length | |
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): | |
break | |
def quantize(self, bits: int, empty_init=False, device=None, **kwargs): | |
if bits == 0: | |
return | |
from .quantization import quantize | |
if self.quantized: | |
logger.info("Already quantized.") | |
return self | |
self.quantized = True | |
self.config.quantization_bit = bits | |
self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device, | |
**kwargs) | |
return self | |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel): | |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) | |
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half) | |
if config.classifier_dropout is not None: | |
self.dropout = nn.Dropout(config.classifier_dropout) | |
else: | |
self.dropout = None | |
self.config = config | |
if self.config.quantization_bit: | |
self.quantize(self.config.quantization_bit, empty_init=True) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
full_attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]: | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
full_attention_mask=full_attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
pooled_hidden_states = hidden_states[-1] | |
if self.dropout is not None: | |
pooled_hidden_states = self.dropout(pooled_hidden_states) | |
logits = self.classifier_head(pooled_hidden_states) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze().float(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits.float(), labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits.float(), labels.view(-1, self.num_labels)) | |
if not return_dict: | |
output = (logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |