import spaces import os import torch import random from huggingface_hub import snapshot_download from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from diffusers import UNet2DConditionModel, AutoencoderKL from diffusers import EulerDiscreteScheduler import gradio as gr # Download the model files ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") # Load the models text_encoder = ChatGLMModel.from_pretrained( os.path.join(ckpt_dir, 'text_encoder'), torch_dtype=torch.float16).half() tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder')) vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).half() scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler")) unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).half() pipe = StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, force_zeros_for_empty_prompt=False) pipe = pipe.to("cuda") pipe.enable_model_cpu_offload() @spaces.GPU def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed): if use_random_seed: seed = random.randint(0, 2**32 - 1) else: seed = int(seed) # Ensure seed is an integer image = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, generator=torch.Generator(pipe.device).manual_seed(seed) ).images return image, seed description = """
Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis