File size: 8,091 Bytes
4659d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import spaces
import gradio as gr
import torch
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor, pipeline
import re
import random
import os
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import UNet2DConditionModel, AutoencoderKL
from diffusers import EulerDiscreteScheduler

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

# Download Kolors model
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")

# Load Kolors models
text_encoder = ChatGLMModel.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'), torch_dtype=dtype).to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'))
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).to(dtype).to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler"))
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).to(dtype).to(device)

kolors_pipe = StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    force_zeros_for_empty_prompt=False
).to(device)
kolors_pipe.enable_model_cpu_offload()

# VLM Captioner
vlm_model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner-v2").to(device).eval()
vlm_processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner-v2")

# Prompt Enhancer
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = 2**32 - 1

# VLM Captioner function
def create_captions_rich(image):
    prompt = "caption en"
    model_inputs = vlm_processor(text=prompt, images=image, return_tensors="pt").to(device)
    input_len = model_inputs["input_ids"].shape[-1]

    with torch.inference_mode():
        generation = vlm_model.generate(**model_inputs, repetition_penalty=1.10, max_new_tokens=256, do_sample=False)
        generation = generation[0][input_len:]
        decoded = vlm_processor.decode(generation, skip_special_tokens=True)

    return modify_caption(decoded)

# Helper function for caption modification
def modify_caption(caption: str) -> str:
    prefix_substrings = [
        ('captured from ', ''),
        ('captured at ', '')
    ]
    pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
    replacers = {opening: replacer for opening, replacer in prefix_substrings}
    
    def replace_fn(match):
        return replacers[match.group(0)]
    
    return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)

# Prompt Enhancer function
def enhance_prompt(input_prompt, model_choice):
    if model_choice == "Medium":
        result = enhancer_medium("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
        
        pattern = r'^.*?of\s+(.*?(?:\.|$))'
        match = re.match(pattern, enhanced_text, re.IGNORECASE | re.DOTALL)
        
        if match:
            remaining_text = enhanced_text[match.end():].strip()
            modified_sentence = match.group(1).capitalize()
            enhanced_text = modified_sentence + ' ' + remaining_text
    else:  # Long
        result = enhancer_long("Enhance the description: " + input_prompt)
        enhanced_text = result[0]['summary_text']
    
    return enhanced_text

def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = kolors_pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0]
    
    return image, seed

# Gradio Interface
@spaces.GPU
def process_workflow(image, text_prompt, use_vlm, use_enhancer, model_choice, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if use_vlm and image is not None:
        prompt = create_captions_rich(image)
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt, model_choice)
    
    generated_image, used_seed = generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps)
    
    return generated_image, prompt, used_seed

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">VLM Captioner + Prompt Enhancer + Kolors Image Generator</h1>
<p><center>
<a href="https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2" target="_blank">[VLM Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance" target="_blank">[Prompt Enhancer Medium]</a>
<a href="https://huggingface.co/Kwai-Kolors/Kolors" target="_blank">[Kolors Model]</a>
<p align="center">Don't forget to click <b>Use VLM Captioner</b> or <b>Use Prompt Enhancer</b> Buttons!</p>
</center></p>
"""

# Gradio Interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image for VLM")
                use_vlm = gr.Checkbox(label="Use VLM Captioner", value=False)
            
            with gr.Group(elem_classes="input-group"):
                text_prompt = gr.Textbox(label="Text Prompt")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                model_choice = gr.Radio(["Medium", "Long"], label="Enhancer Model", value="Long")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(label="Negative Prompt")
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024)
                height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.5, value=5.0)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=20, maximum=50, step=1, value=20)
            
            generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="Generated Image")
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, use_vlm, use_enhancer, model_choice,
            negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)