File size: 8,837 Bytes
7403df3
 
9c8e948
 
 
 
 
 
 
 
6cfd7ba
0598d11
7403df3
9c8e948
 
7403df3
9c8e948
 
 
7403df3
9c8e948
8f453a6
9c8e948
 
7403df3
9c8e948
 
 
7403df3
9c8e948
 
7403df3
9c8e948
 
 
6cfd7ba
 
 
 
 
 
 
0598d11
 
 
9c8e948
4aba831
9c8e948
 
 
 
7403df3
9c8e948
 
 
 
 
 
 
 
7403df3
9c8e948
 
 
 
 
 
 
7403df3
9c8e948
 
 
 
 
7403df3
6cfd7ba
0598d11
9c8e948
 
 
 
 
0598d11
 
 
 
 
 
 
9c8e948
 
7403df3
9c8e948
 
 
 
 
 
 
7403df3
9c8e948
 
 
 
 
 
 
 
 
 
 
7403df3
0598d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8e948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d71213a
9c8e948
 
 
 
 
 
2037b55
bf7095b
7403df3
9c8e948
 
 
 
 
 
6cfd7ba
9c8e948
 
 
 
 
0598d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8e948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0598d11
 
 
 
 
 
 
 
 
 
 
 
 
9c8e948
 
 
0598d11
 
9c8e948
 
7403df3
 
0598d11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
import subprocess
from huggingface_hub import hf_hub_download
from llm_inference import LLMInferenceNode

# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

# SD3.5 model
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=dtype, use_safetensors=True, variant="fp16", token=huggingface_token).to(device)

# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

hf_hub_download(
    repo_id="stabilityai/stable-diffusion-3.5-large-turbo",
    filename="LICENSE.md",
    local_dir = "./models",
    token = huggingface_token
)

# Initialize LLMInferenceNode
llm_node = LLMInferenceNode()

# Florence caption function
@spaces.GPU
def florence_caption(image):
    # Convert image to PIL if it's not already
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<MORE_DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<MORE_DETAILED_CAPTION>"]

# Prompt Enhancer function
def enhance_prompt(input_prompt):
    result = enhancer_long("Enhance the description: " + input_prompt)
    enhanced_text = result[0]['summary_text']
    return enhanced_text

@spaces.GPU(duration=60)
def process_workflow(image, text_prompt, use_enhancer, use_llm_generator, llm_provider, llm_model, prompt_type, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
    if image is not None:
        # Convert image to PIL if it's not already
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        caption = florence_caption(image)
        print(f"Florence caption: {caption}")
        
        if use_llm_generator:
            prompt = generate_llm_prompt(caption, llm_provider, llm_model, prompt_type)
        else:
            prompt = caption
    else:
        prompt = text_prompt
    
    if use_enhancer:
        prompt = enhance_prompt(prompt)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        generator=generator,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        guidance_scale=guidance_scale
    ).images[0]
    
    return image, prompt, seed

def generate_llm_prompt(input_text, provider, model, prompt_type):
    try:
        dynamic_seed = random.randint(0, 1000000)
        result = llm_node.generate(
            input_text=input_text,
            long_talk=True,
            compress=False,
            compression_level="medium",
            poster=False,
            prompt_type=prompt_type,
            provider=provider,
            model=model
        )
        return result
    except Exception as e:
        print(f"An error occurred in generate_llm_prompt: {e}")
        return input_text  # Return original input if there's an error

custom_css = """
.input-group, .output-group {
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    padding: 20px;
    margin-bottom: 20px;
    background-color: #f9f9f9;
}
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

title = """<h1 align="center">Stable Diffusion 3.5 with Florence-2 Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/stabilityai/stable-diffusion-3.5-large" target="_blank">[Stable Diffusion 3.5 Model]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Group(elem_classes="input-group"):
                input_image = gr.Image(label="Input Image (Florence-2 Captioner)", height=512)
            
            with gr.Accordion("Advanced Settings", open=False):
                text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
                negative_prompt = gr.Textbox(label="Negative Prompt")
                use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
                use_llm_generator = gr.Checkbox(label="Use LLM Prompt Generator", value=False)
                llm_provider = gr.Dropdown(
                    choices=["Hugging Face", "SambaNova"],
                    label="LLM Provider",
                    value="Hugging Face",
                    visible=False
                )
                llm_model = gr.Dropdown(
                    label="LLM Model",
                    choices=["Qwen/Qwen2.5-72B-Instruct", "meta-llama/Meta-Llama-3.1-70B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3"],
                    value="Qwen/Qwen2.5-72B-Instruct",
                    visible=False
                )
                prompt_type = gr.Dropdown(
                    choices=["Random", "Long", "Short", "Medium", "OnlyObjects", "NoFigure", "Landscape", "Fantasy"],
                    label="Prompt Type",
                    value="Random",
                    visible=False
                )
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=7.5, step=0.1, value=4.5)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=40)
            
            generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
        
        with gr.Column(scale=1):
            with gr.Group(elem_classes="output-group"):
                output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
                final_prompt = gr.Textbox(label="Final Prompt Used")
                used_seed = gr.Number(label="Seed Used")
    
    def update_llm_visibility(use_llm):
        return {
            llm_provider: gr.update(visible=use_llm),
            llm_model: gr.update(visible=use_llm),
            prompt_type: gr.update(visible=use_llm)
        }

    use_llm_generator.change(
        update_llm_visibility,
        inputs=[use_llm_generator],
        outputs=[llm_provider, llm_model, prompt_type]
    )

    generate_btn.click(
        fn=process_workflow,
        inputs=[
            input_image, text_prompt, use_enhancer, use_llm_generator, llm_provider, llm_model, prompt_type,
            seed, randomize_seed, width, height, guidance_scale, num_inference_steps, negative_prompt
        ],
        outputs=[output_image, final_prompt, used_seed]
    )

demo.launch(debug=True)