Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,443 Bytes
7403df3 9c8e948 6cfd7ba 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 8f453a6 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 6cfd7ba 9c8e948 4aba831 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 6cfd7ba 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 d71213a 9c8e948 2037b55 bf7095b 7403df3 9c8e948 6cfd7ba 9c8e948 7403df3 9c8e948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
import subprocess
from huggingface_hub import hf_hub_download
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# SD3.5 model
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=dtype, use_safetensors=True, variant="fp16", token=huggingface_token).to(device)
# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
hf_hub_download(
repo_id="stabilityai/stable-diffusion-3.5-large-turbo",
filename="LICENSE.md",
local_dir = "./models",
token = huggingface_token
)
# Florence caption function
@spaces.GPU
def florence_caption(image):
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<MORE_DETAILED_CAPTION>"]
# Prompt Enhancer function
def enhance_prompt(input_prompt):
result = enhancer_long("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
return enhanced_text
@spaces.GPU(duration=60)
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
if image is not None:
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
prompt = florence_caption(image)
print(prompt)
else:
prompt = text_prompt
if use_enhancer:
prompt = enhance_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
num_inference_steps=num_inference_steps,
width=width,
height=height,
guidance_scale=guidance_scale
).images[0]
return image, prompt, seed
custom_css = """
.input-group, .output-group {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #f9f9f9;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
title = """<h1 align="center">Stable Diffusion 3.5 with Florence-2 Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/stabilityai/stable-diffusion-3.5-large" target="_blank">[Stable Diffusion 3.5 Model]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes="input-group"):
input_image = gr.Image(label="Input Image (Florence-2 Captioner)", height=512)
with gr.Accordion("Advanced Settings", open=False):
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
negative_prompt = gr.Textbox(label="Negative Prompt")
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=7.5, step=0.1, value=4.5)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=40)
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
with gr.Column(scale=1):
with gr.Group(elem_classes="output-group"):
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
final_prompt = gr.Textbox(label="Final Prompt Used")
used_seed = gr.Number(label="Seed Used")
generate_btn.click(
fn=process_workflow,
inputs=[
input_image, text_prompt, use_enhancer, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps, negative_prompt
],
outputs=[output_image, final_prompt, used_seed]
)
demo.launch(debug=True) |