Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,568 Bytes
7403df3 9c8e948 6cfd7ba 0598d11 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 8f453a6 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 6cfd7ba 0598d11 9c8e948 4aba831 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 9c8e948 2cebab9 9c8e948 7403df3 8840a6c 0598d11 9c8e948 0598d11 9c8e948 7403df3 9c8e948 7403df3 9c8e948 7403df3 0598d11 2cebab9 9c8e948 2037b55 bf7095b 7403df3 0998520 9aba168 4624bf0 9aba168 4624bf0 9aba168 4624bf0 9aba168 4624bf0 0998520 9c8e948 6cfd7ba 9c8e948 e18b028 9aba168 e18b028 9c8e948 e18b028 9c8e948 0598d11 bbe8e66 db63048 7a8d2b0 db63048 e18b028 9c8e948 e18b028 cd63ff7 15ad9e5 e18b028 cd63ff7 e18b028 cd63ff7 e18b028 cd63ff7 e18b028 0598d11 9c8e948 e18b028 0598d11 9c8e948 7403df3 0598d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import spaces
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from diffusers import DiffusionPipeline
import random
import numpy as np
import os
import subprocess
from huggingface_hub import hf_hub_download
from llm_inference import LLMInferenceNode
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# SD3.5 model
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=dtype, use_safetensors=True, variant="fp16", token=huggingface_token).to(device)
# Initialize Florence model
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
# Prompt Enhancer
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
hf_hub_download(
repo_id="stabilityai/stable-diffusion-3.5-large-turbo",
filename="LICENSE.md",
local_dir = "./models",
token = huggingface_token
)
# Initialize LLMInferenceNode
llm_node = LLMInferenceNode()
# Florence caption function
@spaces.GPU
def florence_caption(image):
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<MORE_DETAILED_CAPTION>"]
# Prompt Enhancer function
@spaces.GPU
def enhance_prompt(input_prompt):
result = enhancer_long("Enhance the description: " + input_prompt)
enhanced_text = result[0]['summary_text']
return enhanced_text
@spaces.GPU(duration=75)
def process_workflow(image, text_prompt, use_enhancer, use_llm_generator, llm_provider, llm_model, prompt_type, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
if image is not None:
# Convert image to PIL if it's not already
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
caption = florence_caption(image)
print(f"Florence caption: {caption}")
if use_llm_generator:
prompt = generate_llm_prompt(caption, llm_provider, llm_model, prompt_type)
else:
prompt = caption
else:
prompt = text_prompt
if use_enhancer:
prompt = enhance_prompt(prompt)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
num_inference_steps=num_inference_steps,
width=width,
height=height,
guidance_scale=guidance_scale
).images[0]
return image, prompt, seed
def generate_llm_prompt(input_text, provider, model, prompt_type):
try:
dynamic_seed = random.randint(0, 1000000)
result = llm_node.generate(
input_text=input_text,
long_talk=True,
compress=False,
compression_level="medium",
poster=False,
prompt_type=prompt_type,
provider=provider,
model=model
)
return result
except Exception as e:
print(f"An error occurred in generate_llm_prompt: {e}")
return input_text # Return original input if there's an error
title = """<h1 align="center">Stable Diffusion 3.5 with Florence-2 Captioner and Prompt Enhancer</h1>
<p><center>
<a href="https://huggingface.co/stabilityai/stable-diffusion-3.5-large" target="_blank">[Stable Diffusion 3.5 Model]</a>
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
</center></p>
"""
custom_css = """
.input-group, .output-group {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
background-color: #f9f9f9;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
/* Updated styles for sliders */
.custom-slider input[type="range"] {
-webkit-appearance: none;
width: 100%;
height: 10px;
border-radius: 5px;
background: #d3d3d3;
outline: none;
opacity: 0.7;
transition: opacity .2s;
}
.custom-slider input[type="range"]:hover {
opacity: 1;
}
.custom-slider input[type="range"]::-webkit-slider-thumb {
-webkit-appearance: none;
appearance: none;
width: 20px;
height: 20px;
border-radius: 50%;
background: #2980b9;
cursor: pointer;
}
.custom-slider input[type="range"]::-moz-range-thumb {
width: 20px;
height: 20px;
border-radius: 50%;
background: #2980b9;
cursor: pointer;
}
"""
with gr.Blocks(theme='bethecloud/storj_theme', css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes="input-group"):
input_image = gr.Image(label="Input Image (Florence-2 Captioner)", height=512)
with gr.Accordion("Image Settings", open=False):
width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, elem_classes="custom-slider")
height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, elem_classes="custom-slider")
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=7.5, step=0.1, value=4.5, elem_classes="custom-slider")
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=40, elem_classes="custom-slider")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, elem_classes="custom-slider")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
negative_prompt = gr.Textbox(label="Negative Prompt")
with gr.Column(scale=1):
with gr.Group(elem_classes="input-group"):
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
use_llm_generator = gr.Checkbox(label="Use LLM Prompt Generator", value=False)
with gr.Accordion("LLM Settings", open=False):
llm_provider = gr.Dropdown(
choices=["Hugging Face", "SambaNova"],
label="LLM Provider",
value="Hugging Face",
visible=False
)
llm_model = gr.Dropdown(
label="LLM Model",
choices=["Qwen/Qwen2.5-72B-Instruct", "meta-llama/Meta-Llama-3.1-70B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3"],
value="Qwen/Qwen2.5-72B-Instruct",
visible=False
)
prompt_type = gr.Dropdown(
choices=["Random", "Long", "Short", "Medium", "OnlyObjects", "NoFigure", "Landscape", "Fantasy"],
label="Prompt Type",
value="Short",
visible=False
)
generate_prompt_btn = gr.Button("Generate Prompt", elem_classes="submit-btn")
final_prompt = gr.Textbox(label="Final Prompt", interactive=False)
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
with gr.Column(scale=1):
with gr.Group(elem_classes="output-group"):
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
used_seed = gr.Number(label="Seed Used")
def update_model_choices(provider):
provider_models = {
"Hugging Face": [
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3"
],
"SambaNova": [
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
],
}
models = provider_models.get(provider, [])
return gr.Dropdown(choices=models, value=models[0] if models else "")
def update_llm_visibility(use_llm):
return {
llm_provider: gr.update(visible=use_llm),
llm_model: gr.update(visible=use_llm),
prompt_type: gr.update(visible=use_llm)
}
use_llm_generator.change(
update_llm_visibility,
inputs=[use_llm_generator],
outputs=[llm_provider, llm_model, prompt_type]
)
llm_provider.change(
update_model_choices,
inputs=[llm_provider],
outputs=[llm_model]
)
def generate_prompt(image, text_prompt, use_enhancer, use_llm_generator, llm_provider, llm_model, prompt_type):
if image is not None:
caption = florence_caption(image)
initial_prompt = caption
else:
initial_prompt = text_prompt
if use_llm_generator:
prompt = generate_llm_prompt(initial_prompt, llm_provider, llm_model, prompt_type)
else:
prompt = initial_prompt
if use_enhancer:
prompt = enhance_prompt(prompt)
return prompt
generate_prompt_btn.click(
fn=generate_prompt,
inputs=[
input_image, text_prompt, use_enhancer, use_llm_generator, llm_provider, llm_model, prompt_type
],
outputs=[final_prompt]
)
generate_btn.click(
fn=process_workflow,
inputs=[
input_image, final_prompt, use_enhancer, use_llm_generator, llm_provider, llm_model, prompt_type,
seed, randomize_seed, width, height, guidance_scale, num_inference_steps, negative_prompt
],
outputs=[output_image, final_prompt, used_seed]
)
demo.launch(debug=True)
|