import spaces import os import requests import time import torch from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from diffusers.models import AutoencoderKL from diffusers.models.attention_processor import AttnProcessor2_0 from PIL import Image import cv2 import numpy as np from RealESRGAN import RealESRGAN import gradio as gr from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download USE_TORCH_COMPILE = False ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def download_models(): models = { "MODEL": ("dantea1118/juggernaut_reborn", "juggernaut_reborn.safetensors", "models/models/Stable-diffusion"), "UPSCALER_X2": ("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", "models/upscalers/"), "UPSCALER_X4": ("ai-forever/Real-ESRGAN", "RealESRGAN_x4.pth", "models/upscalers/"), "NEGATIVE_1": ("philz1337x/embeddings", "verybadimagenegative_v1.3.pt", "models/embeddings"), "NEGATIVE_2": ("philz1337x/embeddings", "JuggernautNegative-neg.pt", "models/embeddings"), "LORA_1": ("philz1337x/loras", "SDXLrender_v2.0.safetensors", "models/Lora"), "LORA_2": ("philz1337x/loras", "more_details.safetensors", "models/Lora"), "CONTROLNET": ("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet"), "VAE": ("stabilityai/sd-vae-ft-mse-original", "vae-ft-mse-840000-ema-pruned.safetensors", "models/VAE"), } for model, (repo_id, filename, local_dir) in models.items(): hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) download_models() def timer_func(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() print(f"{func.__name__} took {end_time - start_time:.2f} seconds") return result return wrapper class LazyLoadPipeline: def __init__(self): self.pipe = None @timer_func def load(self): if self.pipe is None: print("Starting to load the pipeline...") self.pipe = self.setup_pipeline() print(f"Moving pipeline to device: {device}") self.pipe.to(device) if USE_TORCH_COMPILE: print("Compiling the model...") self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True) @timer_func def setup_pipeline(self): print("Setting up the pipeline...") controlnet = ControlNetModel.from_single_file( "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16 ) safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors" pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file( model_path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, safety_checker=safety_checker ) vae = AutoencoderKL.from_single_file( "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors", torch_dtype=torch.float16 ) pipe.vae = vae pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt") pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt") pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors") pipe.fuse_lora(lora_scale=0.5) pipe.load_lora_weights("models/Lora/more_details.safetensors") pipe.fuse_lora(lora_scale=1.) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4) return pipe def __call__(self, *args, **kwargs): return self.pipe(*args, **kwargs) class LazyRealESRGAN: def __init__(self, device, scale): self.device = device self.scale = scale self.model = None def load_model(self): if self.model is None: self.model = RealESRGAN(self.device, scale=self.scale) self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False) def predict(self, img): self.load_model() return self.model.predict(img) lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2) lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4) @timer_func def resize_and_upscale(input_image, resolution): scale = 2 if resolution <= 2048 else 4 input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H = int(round(H * k / 64.0)) * 64 W = int(round(W * k / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) if scale == 2: img = lazy_realesrgan_x2.predict(img) else: img = lazy_realesrgan_x4.predict(img) return img @timer_func def create_hdr_effect(original_image, hdr): if hdr == 0: return original_image cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR) factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr, 1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr, 1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr] images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors] merge_mertens = cv2.createMergeMertens() hdr_image = merge_mertens.process(images) hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8') return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB)) lazy_pipe = LazyLoadPipeline() lazy_pipe.load() def prepare_image(input_image, resolution, hdr): condition_image = resize_and_upscale(input_image, resolution) condition_image = create_hdr_effect(condition_image, hdr) return condition_image @spaces.GPU @timer_func def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale): print("Starting image processing...") torch.cuda.empty_cache() condition_image = prepare_image(input_image, resolution, hdr) prompt = "masterpiece, best quality, highres" negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg" options = { "prompt": prompt, "negative_prompt": negative_prompt, "image": condition_image, "control_image": condition_image, "width": condition_image.size[0], "height": condition_image.size[1], "strength": strength, "num_inference_steps": num_inference_steps, "guidance_scale": guidance_scale, "generator": torch.Generator(device=device).manual_seed(0), } print("Running inference...") result = lazy_pipe(**options).images[0] print("Image processing completed successfully") # Convert input_image and result to numpy arrays input_array = np.array(input_image) result_array = np.array(result) return [input_array, result_array] title = """

Image Upscaler with Tile Controlnet

The main ideas come from

[philz1337x] [Pau-Lozano]

""" with gr.Blocks() as demo: gr.HTML(title) with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input Image") run_button = gr.Button("Enhance Image") with gr.Column(): output_slider = ImageSlider(label="Before / After", type="numpy") with gr.Accordion("Advanced Options", open=False): resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution") num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps") strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength") hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect") guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale") run_button.click(fn=gradio_process_image, inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale], outputs=output_slider) # Add examples with all required inputs gr.Examples( examples=[ ["image1.jpg", 512, 20, 0.4, 0, 3], ["image2.png", 512, 20, 0.4, 0, 3], ["image3.png", 512, 20, 0.4, 0, 3], ], inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale], outputs=output_slider, fn=gradio_process_image, cache_examples=True, ) demo.launch(share=True)