adding model classification
Browse files- app.py +21 -3
- tag_map.json +1 -0
app.py
CHANGED
@@ -1,9 +1,27 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
return "Hello " + name + "!!"
|
6 |
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
3 |
+
import json
|
4 |
|
5 |
+
with open("tag_map.json") as tag_map_file:
|
6 |
+
tag_map = json.load(tag_map_file)
|
7 |
|
8 |
+
reverse_map = {j: i for i, j in tag_map.items()}
|
|
|
9 |
|
10 |
+
model_name_or_path = "roberta-base"
|
11 |
|
12 |
+
config = AutoConfig.from_pretrained(model_name_or_path)
|
13 |
+
config.num_classes = len(tag_map)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
15 |
+
model_name_or_path, config=config
|
16 |
+
)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
18 |
+
|
19 |
+
|
20 |
+
def classify(text):
|
21 |
+
return reverse_map[
|
22 |
+
model(**tokenizer(text, return_tensors="pt")).logits.argmax(-1).item()
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
iface = gr.Interface(fn=classify, inputs="text", outputs="text")
|
27 |
iface.launch()
|
tag_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"advantageous_effects_of_the_invention": 0, "solution_to_the_problem": 1, "technical_problem": 2, "other": 3}
|