File size: 1,186 Bytes
efaae49
1
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: matrix_transpose"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "\n", "import gradio as gr\n", "\n", "\n", "def transpose(matrix):\n", "    return matrix.T\n", "\n", "\n", "demo = gr.Interface(\n", "    transpose,\n", "    gr.Dataframe(type=\"numpy\", datatype=\"number\", row_count=5, col_count=3),\n", "    \"numpy\",\n", "    examples=[\n", "        [np.zeros((3, 3)).tolist()],\n", "        [np.ones((2, 2)).tolist()],\n", "        [np.random.randint(0, 10, (3, 10)).tolist()],\n", "        [np.random.randint(0, 10, (10, 3)).tolist()],\n", "        [np.random.randint(0, 10, (10, 10)).tolist()],\n", "    ],\n", "    cache_examples=False\n", ")\n", "\n", "if __name__ == \"__main__\":\n", "    demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}