|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import torch |
|
from omegaconf import II |
|
|
|
from .dummy_dataset import DummyDataset |
|
from fairseq.data import Dictionary |
|
from fairseq.dataclass import FairseqDataclass |
|
from fairseq.tasks import FairseqTask, register_task |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class DummyMaskedLMConfig(FairseqDataclass): |
|
dict_size: int = 49996 |
|
dataset_size: int = 100000 |
|
tokens_per_sample: int = field( |
|
default=512, |
|
metadata={ |
|
"help": "max number of total tokens over all" |
|
" segments per sample for BERT dataset" |
|
}, |
|
) |
|
batch_size: Optional[int] = II("dataset.batch_size") |
|
max_tokens: Optional[int] = II("dataset.max_tokens") |
|
max_target_positions: int = II("task.tokens_per_sample") |
|
|
|
|
|
@register_task("dummy_masked_lm", dataclass=DummyMaskedLMConfig) |
|
class DummyMaskedLMTask(FairseqTask): |
|
def __init__(self, cfg: DummyMaskedLMConfig): |
|
super().__init__(cfg) |
|
|
|
self.dictionary = Dictionary() |
|
for i in range(cfg.dict_size): |
|
self.dictionary.add_symbol("word{}".format(i)) |
|
logger.info("dictionary: {} types".format(len(self.dictionary))) |
|
|
|
self.mask_idx = self.dictionary.add_symbol("<mask>") |
|
self.dictionary.pad_to_multiple_(8) |
|
|
|
mask_idx = 0 |
|
pad_idx = 1 |
|
seq = torch.arange(cfg.tokens_per_sample) + pad_idx + 1 |
|
mask = torch.arange(2, cfg.tokens_per_sample, 7) |
|
src = seq.clone() |
|
src[mask] = mask_idx |
|
tgt = torch.full_like(seq, pad_idx) |
|
tgt[mask] = seq[mask] |
|
|
|
self.dummy_src = src |
|
self.dummy_tgt = tgt |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
"""Load a given dataset split. |
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
""" |
|
if self.cfg.batch_size is not None: |
|
bsz = self.cfg.batch_size |
|
else: |
|
bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample) |
|
self.datasets[split] = DummyDataset( |
|
{ |
|
"id": 1, |
|
"net_input": { |
|
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), |
|
"src_lengths": torch.full( |
|
(bsz,), self.cfg.tokens_per_sample, dtype=torch.long |
|
), |
|
}, |
|
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]), |
|
"nsentences": bsz, |
|
"ntokens": bsz * self.cfg.tokens_per_sample, |
|
}, |
|
num_items=self.cfg.dataset_size, |
|
item_size=self.cfg.tokens_per_sample, |
|
) |
|
|
|
@property |
|
def source_dictionary(self): |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
return self.dictionary |
|
|