aliabd
commited on
Commit
•
d5175d3
1
Parent(s):
a0514a7
full working demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CODE_OF_CONDUCT.md +77 -0
- CONTRIBUTING.md +28 -0
- LICENSE +21 -0
- app.py +14 -0
- audio1.mp3 +0 -0
- audio2.mp3 +0 -0
- docs/Makefile +20 -0
- docs/_static/theme_overrides.css +9 -0
- docs/command_line_tools.rst +85 -0
- docs/conf.py +134 -0
- docs/criterions.rst +31 -0
- docs/data.rst +58 -0
- docs/docutils.conf +2 -0
- docs/fairseq.gif +0 -0
- docs/fairseq_logo.png +0 -0
- docs/getting_started.rst +216 -0
- docs/hydra_integration.md +284 -0
- docs/index.rst +49 -0
- docs/lr_scheduler.rst +34 -0
- docs/make.bat +36 -0
- docs/models.rst +104 -0
- docs/modules.rst +9 -0
- docs/optim.rst +38 -0
- docs/overview.rst +74 -0
- docs/requirements.txt +2 -0
- docs/tasks.rst +61 -0
- docs/tutorial_classifying_names.rst +415 -0
- docs/tutorial_simple_lstm.rst +518 -0
- examples/.gitignore +2 -0
- examples/__init__.py +9 -0
- examples/adaptive_span/README.md +90 -0
- examples/adaptive_span/__init__.py +19 -0
- examples/adaptive_span/adagrad_with_grad_clip.py +128 -0
- examples/adaptive_span/adaptive_span_attention.py +160 -0
- examples/adaptive_span/adaptive_span_loss.py +106 -0
- examples/adaptive_span/adaptive_span_model.py +263 -0
- examples/adaptive_span/adaptive_span_model_wrapper.py +145 -0
- examples/adaptive_span/truncated_bptt_lm_task.py +1 -0
- examples/backtranslation/README.md +297 -0
- examples/backtranslation/deduplicate_lines.py +41 -0
- examples/backtranslation/extract_bt_data.py +72 -0
- examples/backtranslation/prepare-de-monolingual.sh +98 -0
- examples/backtranslation/prepare-wmt18en2de.sh +135 -0
- examples/backtranslation/sacrebleu.sh +37 -0
- examples/backtranslation/tokenized_bleu.sh +46 -0
- examples/bart/README.glue.md +99 -0
- examples/bart/README.md +228 -0
- examples/bart/README.summarization.md +102 -0
- examples/bart/summarize.py +100 -0
- examples/byte_level_bpe/README.md +88 -0
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code of Conduct
|
2 |
+
|
3 |
+
## Our Pledge
|
4 |
+
|
5 |
+
In the interest of fostering an open and welcoming environment, we as
|
6 |
+
contributors and maintainers pledge to make participation in our project and
|
7 |
+
our community a harassment-free experience for everyone, regardless of age, body
|
8 |
+
size, disability, ethnicity, sex characteristics, gender identity and expression,
|
9 |
+
level of experience, education, socio-economic status, nationality, personal
|
10 |
+
appearance, race, religion, or sexual identity and orientation.
|
11 |
+
|
12 |
+
## Our Standards
|
13 |
+
|
14 |
+
Examples of behavior that contributes to creating a positive environment
|
15 |
+
include:
|
16 |
+
|
17 |
+
* Using welcoming and inclusive language
|
18 |
+
* Being respectful of differing viewpoints and experiences
|
19 |
+
* Gracefully accepting constructive criticism
|
20 |
+
* Focusing on what is best for the community
|
21 |
+
* Showing empathy towards other community members
|
22 |
+
|
23 |
+
Examples of unacceptable behavior by participants include:
|
24 |
+
|
25 |
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26 |
+
advances
|
27 |
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28 |
+
* Public or private harassment
|
29 |
+
* Publishing others' private information, such as a physical or electronic
|
30 |
+
address, without explicit permission
|
31 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
32 |
+
professional setting
|
33 |
+
|
34 |
+
## Our Responsibilities
|
35 |
+
|
36 |
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37 |
+
behavior and are expected to take appropriate and fair corrective action in
|
38 |
+
response to any instances of unacceptable behavior.
|
39 |
+
|
40 |
+
Project maintainers have the right and responsibility to remove, edit, or
|
41 |
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42 |
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43 |
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44 |
+
threatening, offensive, or harmful.
|
45 |
+
|
46 |
+
## Scope
|
47 |
+
|
48 |
+
This Code of Conduct applies within all project spaces, and it also applies when
|
49 |
+
an individual is representing the project or its community in public spaces.
|
50 |
+
Examples of representing a project or community include using an official
|
51 |
+
project e-mail address, posting via an official social media account, or acting
|
52 |
+
as an appointed representative at an online or offline event. Representation of
|
53 |
+
a project may be further defined and clarified by project maintainers.
|
54 |
+
|
55 |
+
## Enforcement
|
56 |
+
|
57 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58 |
+
reported by contacting the project team at <[email protected]>. All
|
59 |
+
complaints will be reviewed and investigated and will result in a response that
|
60 |
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61 |
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62 |
+
Further details of specific enforcement policies may be posted separately.
|
63 |
+
|
64 |
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65 |
+
faith may face temporary or permanent repercussions as determined by other
|
66 |
+
members of the project's leadership.
|
67 |
+
|
68 |
+
## Attribution
|
69 |
+
|
70 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71 |
+
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
|
72 |
+
|
73 |
+
[homepage]: https://www.contributor-covenant.org
|
74 |
+
|
75 |
+
For answers to common questions about this code of conduct, see
|
76 |
+
https://www.contributor-covenant.org/faq
|
77 |
+
|
CONTRIBUTING.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq)
|
2 |
+
We want to make contributing to this project as easy and transparent as
|
3 |
+
possible.
|
4 |
+
|
5 |
+
## Pull Requests
|
6 |
+
We actively welcome your pull requests.
|
7 |
+
|
8 |
+
1. Fork the repo and create your branch from `master`.
|
9 |
+
2. If you've added code that should be tested, add tests.
|
10 |
+
3. If you've changed APIs, update the documentation.
|
11 |
+
4. Ensure the test suite passes.
|
12 |
+
5. Make sure your code lints.
|
13 |
+
6. If you haven't already, complete the Contributor License Agreement ("CLA").
|
14 |
+
|
15 |
+
## Contributor License Agreement ("CLA")
|
16 |
+
In order to accept your pull request, we need you to submit a CLA. You only need
|
17 |
+
to do this once to work on any of Facebook's open source projects.
|
18 |
+
|
19 |
+
Complete your CLA here: <https://code.facebook.com/cla>
|
20 |
+
|
21 |
+
## Issues
|
22 |
+
We use GitHub issues to track public bugs. Please ensure your description is
|
23 |
+
clear and has sufficient instructions to be able to reproduce the issue.
|
24 |
+
|
25 |
+
## License
|
26 |
+
By contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq),
|
27 |
+
you agree that your contributions will be licensed under the LICENSE file in
|
28 |
+
the root directory of this source tree.
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) Facebook, Inc. and its affiliates.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
app.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
description = "HuBERT: Self-Supervised Speech Representation Learning. To use it, simply add your audio or click one of the examples to load them. Read more at the links below."
|
6 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2106.07447'>HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units</a> | <a href='https://github.com/pytorch/fairseq/tree/master/examples/hubert'>Github Repo</a></p>"
|
7 |
+
|
8 |
+
gr.Interface.load("huggingface/facebook/hubert-large-ls960-ft",
|
9 |
+
description=description,
|
10 |
+
article=article,
|
11 |
+
examples=[
|
12 |
+
["./audio1.mp3"],
|
13 |
+
["./audio2.mp3"]
|
14 |
+
]).launch()
|
audio1.mp3
ADDED
Binary file (221 kB). View file
|
|
audio2.mp3
ADDED
Binary file (268 kB). View file
|
|
docs/Makefile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Minimal makefile for Sphinx documentation
|
2 |
+
#
|
3 |
+
|
4 |
+
# You can set these variables from the command line.
|
5 |
+
SPHINXOPTS =
|
6 |
+
SPHINXBUILD = python -msphinx
|
7 |
+
SPHINXPROJ = fairseq
|
8 |
+
SOURCEDIR = .
|
9 |
+
BUILDDIR = _build
|
10 |
+
|
11 |
+
# Put it first so that "make" without argument is like "make help".
|
12 |
+
help:
|
13 |
+
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
14 |
+
|
15 |
+
.PHONY: help Makefile
|
16 |
+
|
17 |
+
# Catch-all target: route all unknown targets to Sphinx using the new
|
18 |
+
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
19 |
+
%: Makefile
|
20 |
+
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
docs/_static/theme_overrides.css
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.wy-table-responsive table td kbd {
|
2 |
+
white-space: nowrap;
|
3 |
+
}
|
4 |
+
.wy-table-responsive table td {
|
5 |
+
white-space: normal !important;
|
6 |
+
}
|
7 |
+
.wy-table-responsive {
|
8 |
+
overflow: visible !important;
|
9 |
+
}
|
docs/command_line_tools.rst
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. _Command-line Tools:
|
2 |
+
|
3 |
+
Command-line Tools
|
4 |
+
==================
|
5 |
+
|
6 |
+
Fairseq provides several command-line tools for training and evaluating models:
|
7 |
+
|
8 |
+
- :ref:`fairseq-preprocess`: Data pre-processing: build vocabularies and binarize training data
|
9 |
+
- :ref:`fairseq-train`: Train a new model on one or multiple GPUs
|
10 |
+
- :ref:`fairseq-generate`: Translate pre-processed data with a trained model
|
11 |
+
- :ref:`fairseq-interactive`: Translate raw text with a trained model
|
12 |
+
- :ref:`fairseq-score`: BLEU scoring of generated translations against reference translations
|
13 |
+
- :ref:`fairseq-eval-lm`: Language model evaluation
|
14 |
+
|
15 |
+
|
16 |
+
.. _fairseq-preprocess:
|
17 |
+
|
18 |
+
fairseq-preprocess
|
19 |
+
~~~~~~~~~~~~~~~~~~
|
20 |
+
.. automodule:: fairseq_cli.preprocess
|
21 |
+
|
22 |
+
.. argparse::
|
23 |
+
:module: fairseq.options
|
24 |
+
:func: get_preprocessing_parser
|
25 |
+
:prog: fairseq-preprocess
|
26 |
+
|
27 |
+
|
28 |
+
.. _fairseq-train:
|
29 |
+
|
30 |
+
fairseq-train
|
31 |
+
~~~~~~~~~~~~~
|
32 |
+
.. automodule:: fairseq_cli.train
|
33 |
+
|
34 |
+
.. argparse::
|
35 |
+
:module: fairseq.options
|
36 |
+
:func: get_training_parser
|
37 |
+
:prog: fairseq-train
|
38 |
+
|
39 |
+
|
40 |
+
.. _fairseq-generate:
|
41 |
+
|
42 |
+
fairseq-generate
|
43 |
+
~~~~~~~~~~~~~~~~
|
44 |
+
.. automodule:: fairseq_cli.generate
|
45 |
+
|
46 |
+
.. argparse::
|
47 |
+
:module: fairseq.options
|
48 |
+
:func: get_generation_parser
|
49 |
+
:prog: fairseq-generate
|
50 |
+
|
51 |
+
|
52 |
+
.. _fairseq-interactive:
|
53 |
+
|
54 |
+
fairseq-interactive
|
55 |
+
~~~~~~~~~~~~~~~~~~~
|
56 |
+
.. automodule:: fairseq_cli.interactive
|
57 |
+
|
58 |
+
.. argparse::
|
59 |
+
:module: fairseq.options
|
60 |
+
:func: get_interactive_generation_parser
|
61 |
+
:prog: fairseq-interactive
|
62 |
+
|
63 |
+
|
64 |
+
.. _fairseq-score:
|
65 |
+
|
66 |
+
fairseq-score
|
67 |
+
~~~~~~~~~~~~~
|
68 |
+
.. automodule:: fairseq_cli.score
|
69 |
+
|
70 |
+
.. argparse::
|
71 |
+
:module: fairseq_cli.score
|
72 |
+
:func: get_parser
|
73 |
+
:prog: fairseq-score
|
74 |
+
|
75 |
+
|
76 |
+
.. _fairseq-eval-lm:
|
77 |
+
|
78 |
+
fairseq-eval-lm
|
79 |
+
~~~~~~~~~~~~~~~
|
80 |
+
.. automodule:: fairseq_cli.eval_lm
|
81 |
+
|
82 |
+
.. argparse::
|
83 |
+
:module: fairseq.options
|
84 |
+
:func: get_eval_lm_parser
|
85 |
+
:prog: fairseq-eval-lm
|
docs/conf.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
#
|
4 |
+
# fairseq documentation build configuration file, created by
|
5 |
+
# sphinx-quickstart on Fri Aug 17 21:45:30 2018.
|
6 |
+
#
|
7 |
+
# This file is execfile()d with the current directory set to its
|
8 |
+
# containing dir.
|
9 |
+
#
|
10 |
+
# Note that not all possible configuration values are present in this
|
11 |
+
# autogenerated file.
|
12 |
+
#
|
13 |
+
# All configuration values have a default; values that are commented out
|
14 |
+
# serve to show the default.
|
15 |
+
|
16 |
+
# If extensions (or modules to document with autodoc) are in another directory,
|
17 |
+
# add these directories to sys.path here. If the directory is relative to the
|
18 |
+
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
19 |
+
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
from fairseq import __version__
|
23 |
+
|
24 |
+
|
25 |
+
# source code directory, relative to this file, for sphinx-autobuild
|
26 |
+
sys.path.insert(0, os.path.abspath(".."))
|
27 |
+
|
28 |
+
source_suffix = [".rst"]
|
29 |
+
|
30 |
+
# -- General configuration ------------------------------------------------
|
31 |
+
|
32 |
+
# If your documentation needs a minimal Sphinx version, state it here.
|
33 |
+
#
|
34 |
+
# needs_sphinx = '1.0'
|
35 |
+
|
36 |
+
# Add any Sphinx extension module names here, as strings. They can be
|
37 |
+
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
38 |
+
# ones.
|
39 |
+
extensions = [
|
40 |
+
"sphinx.ext.autodoc",
|
41 |
+
"sphinx.ext.intersphinx",
|
42 |
+
"sphinx.ext.viewcode",
|
43 |
+
"sphinx.ext.napoleon",
|
44 |
+
"sphinxarg.ext",
|
45 |
+
]
|
46 |
+
|
47 |
+
# Add any paths that contain templates here, relative to this directory.
|
48 |
+
templates_path = ["_templates"]
|
49 |
+
|
50 |
+
# The master toctree document.
|
51 |
+
master_doc = "index"
|
52 |
+
|
53 |
+
# General information about the project.
|
54 |
+
project = "fairseq"
|
55 |
+
copyright = "Facebook AI Research (FAIR)"
|
56 |
+
author = "Facebook AI Research (FAIR)"
|
57 |
+
|
58 |
+
github_doc_root = "https://github.com/pytorch/fairseq/tree/master/docs/"
|
59 |
+
|
60 |
+
# The version info for the project you're documenting, acts as replacement for
|
61 |
+
# |version| and |release|, also used in various other places throughout the
|
62 |
+
# built documents.
|
63 |
+
#
|
64 |
+
# The short X.Y version.
|
65 |
+
version = __version__
|
66 |
+
# The full version, including alpha/beta/rc tags.
|
67 |
+
release = __version__
|
68 |
+
|
69 |
+
# The language for content autogenerated by Sphinx. Refer to documentation
|
70 |
+
# for a list of supported languages.
|
71 |
+
#
|
72 |
+
# This is also used if you do content translation via gettext catalogs.
|
73 |
+
# Usually you set "language" from the command line for these cases.
|
74 |
+
language = None
|
75 |
+
|
76 |
+
# List of patterns, relative to source directory, that match files and
|
77 |
+
# directories to ignore when looking for source files.
|
78 |
+
# This patterns also effect to html_static_path and html_extra_path
|
79 |
+
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
|
80 |
+
|
81 |
+
# The name of the Pygments (syntax highlighting) style to use.
|
82 |
+
pygments_style = "sphinx"
|
83 |
+
highlight_language = "python"
|
84 |
+
|
85 |
+
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
86 |
+
todo_include_todos = False
|
87 |
+
|
88 |
+
|
89 |
+
# -- Options for HTML output ----------------------------------------------
|
90 |
+
|
91 |
+
# The theme to use for HTML and HTML Help pages. See the documentation for
|
92 |
+
# a list of builtin themes.
|
93 |
+
#
|
94 |
+
html_theme = "sphinx_rtd_theme"
|
95 |
+
|
96 |
+
# Theme options are theme-specific and customize the look and feel of a theme
|
97 |
+
# further. For a list of options available for each theme, see the
|
98 |
+
# documentation.
|
99 |
+
#
|
100 |
+
# html_theme_options = {}
|
101 |
+
|
102 |
+
# Add any paths that contain custom static files (such as style sheets) here,
|
103 |
+
# relative to this directory. They are copied after the builtin static files,
|
104 |
+
# so a file named "default.css" will overwrite the builtin "default.css".
|
105 |
+
html_static_path = ["_static"]
|
106 |
+
|
107 |
+
html_context = {
|
108 |
+
"css_files": [
|
109 |
+
"_static/theme_overrides.css", # override wide tables in RTD theme
|
110 |
+
],
|
111 |
+
}
|
112 |
+
|
113 |
+
# Custom sidebar templates, must be a dictionary that maps document names
|
114 |
+
# to template names.
|
115 |
+
#
|
116 |
+
# This is required for the alabaster theme
|
117 |
+
# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars
|
118 |
+
# html_sidebars = {
|
119 |
+
# '**': [
|
120 |
+
# 'about.html',
|
121 |
+
# 'navigation.html',
|
122 |
+
# 'relations.html', # needs 'show_related': True theme option to display
|
123 |
+
# 'searchbox.html',
|
124 |
+
# 'donate.html',
|
125 |
+
# ]
|
126 |
+
# }
|
127 |
+
|
128 |
+
|
129 |
+
# Example configuration for intersphinx: refer to the Python standard library.
|
130 |
+
intersphinx_mapping = {
|
131 |
+
"numpy": ("http://docs.scipy.org/doc/numpy/", None),
|
132 |
+
"python": ("https://docs.python.org/", None),
|
133 |
+
"torch": ("https://pytorch.org/docs/master/", None),
|
134 |
+
}
|
docs/criterions.rst
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. role:: hidden
|
2 |
+
:class: hidden-section
|
3 |
+
|
4 |
+
.. _Criterions:
|
5 |
+
|
6 |
+
Criterions
|
7 |
+
==========
|
8 |
+
|
9 |
+
Criterions compute the loss function given the model and batch, roughly::
|
10 |
+
|
11 |
+
loss = criterion(model, batch)
|
12 |
+
|
13 |
+
.. automodule:: fairseq.criterions
|
14 |
+
:members:
|
15 |
+
|
16 |
+
.. autoclass:: fairseq.criterions.FairseqCriterion
|
17 |
+
:members:
|
18 |
+
:undoc-members:
|
19 |
+
|
20 |
+
.. autoclass:: fairseq.criterions.adaptive_loss.AdaptiveLoss
|
21 |
+
:members:
|
22 |
+
:undoc-members:
|
23 |
+
.. autoclass:: fairseq.criterions.composite_loss.CompositeLoss
|
24 |
+
:members:
|
25 |
+
:undoc-members:
|
26 |
+
.. autoclass:: fairseq.criterions.cross_entropy.CrossEntropyCriterion
|
27 |
+
:members:
|
28 |
+
:undoc-members:
|
29 |
+
.. autoclass:: fairseq.criterions.label_smoothed_cross_entropy.LabelSmoothedCrossEntropyCriterion
|
30 |
+
:members:
|
31 |
+
:undoc-members:
|
docs/data.rst
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. role:: hidden
|
2 |
+
:class: hidden-section
|
3 |
+
|
4 |
+
.. module:: fairseq.data
|
5 |
+
|
6 |
+
Data Loading and Utilities
|
7 |
+
==========================
|
8 |
+
|
9 |
+
.. _datasets:
|
10 |
+
|
11 |
+
Datasets
|
12 |
+
--------
|
13 |
+
|
14 |
+
**Datasets** define the data format and provide helpers for creating
|
15 |
+
mini-batches.
|
16 |
+
|
17 |
+
.. autoclass:: fairseq.data.FairseqDataset
|
18 |
+
:members:
|
19 |
+
.. autoclass:: fairseq.data.LanguagePairDataset
|
20 |
+
:members:
|
21 |
+
.. autoclass:: fairseq.data.MonolingualDataset
|
22 |
+
:members:
|
23 |
+
|
24 |
+
**Helper Datasets**
|
25 |
+
|
26 |
+
These datasets wrap other :class:`fairseq.data.FairseqDataset` instances and
|
27 |
+
provide additional functionality:
|
28 |
+
|
29 |
+
.. autoclass:: fairseq.data.BacktranslationDataset
|
30 |
+
:members:
|
31 |
+
.. autoclass:: fairseq.data.ConcatDataset
|
32 |
+
:members:
|
33 |
+
.. autoclass:: fairseq.data.ResamplingDataset
|
34 |
+
:members:
|
35 |
+
.. autoclass:: fairseq.data.RoundRobinZipDatasets
|
36 |
+
:members:
|
37 |
+
.. autoclass:: fairseq.data.TransformEosDataset
|
38 |
+
:members:
|
39 |
+
|
40 |
+
|
41 |
+
Dictionary
|
42 |
+
----------
|
43 |
+
|
44 |
+
.. autoclass:: fairseq.data.Dictionary
|
45 |
+
:members:
|
46 |
+
|
47 |
+
|
48 |
+
Iterators
|
49 |
+
---------
|
50 |
+
|
51 |
+
.. autoclass:: fairseq.data.CountingIterator
|
52 |
+
:members:
|
53 |
+
.. autoclass:: fairseq.data.EpochBatchIterator
|
54 |
+
:members:
|
55 |
+
.. autoclass:: fairseq.data.GroupedIterator
|
56 |
+
:members:
|
57 |
+
.. autoclass:: fairseq.data.ShardedIterator
|
58 |
+
:members:
|
docs/docutils.conf
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[writers]
|
2 |
+
option-limit=0
|
docs/fairseq.gif
ADDED
docs/fairseq_logo.png
ADDED
docs/getting_started.rst
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Evaluating Pre-trained Models
|
2 |
+
=============================
|
3 |
+
|
4 |
+
First, download a pre-trained model along with its vocabularies:
|
5 |
+
|
6 |
+
.. code-block:: console
|
7 |
+
|
8 |
+
> curl https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf -
|
9 |
+
|
10 |
+
This model uses a `Byte Pair Encoding (BPE)
|
11 |
+
vocabulary <https://arxiv.org/abs/1508.07909>`__, so we'll have to apply
|
12 |
+
the encoding to the source text before it can be translated. This can be
|
13 |
+
done with the
|
14 |
+
`apply\_bpe.py <https://github.com/rsennrich/subword-nmt/blob/master/subword_nmt/apply_bpe.py>`__
|
15 |
+
script using the ``wmt14.en-fr.fconv-cuda/bpecodes`` file. ``@@`` is
|
16 |
+
used as a continuation marker and the original text can be easily
|
17 |
+
recovered with e.g. ``sed s/@@ //g`` or by passing the ``--remove-bpe``
|
18 |
+
flag to :ref:`fairseq-generate`. Prior to BPE, input text needs to be tokenized
|
19 |
+
using ``tokenizer.perl`` from
|
20 |
+
`mosesdecoder <https://github.com/moses-smt/mosesdecoder>`__.
|
21 |
+
|
22 |
+
Let's use :ref:`fairseq-interactive` to generate translations interactively.
|
23 |
+
Here, we use a beam size of 5 and preprocess the input with the Moses
|
24 |
+
tokenizer and the given Byte-Pair Encoding vocabulary. It will automatically
|
25 |
+
remove the BPE continuation markers and detokenize the output.
|
26 |
+
|
27 |
+
.. code-block:: console
|
28 |
+
|
29 |
+
> MODEL_DIR=wmt14.en-fr.fconv-py
|
30 |
+
> fairseq-interactive \
|
31 |
+
--path $MODEL_DIR/model.pt $MODEL_DIR \
|
32 |
+
--beam 5 --source-lang en --target-lang fr \
|
33 |
+
--tokenizer moses \
|
34 |
+
--bpe subword_nmt --bpe-codes $MODEL_DIR/bpecodes
|
35 |
+
| loading model(s) from wmt14.en-fr.fconv-py/model.pt
|
36 |
+
| [en] dictionary: 44206 types
|
37 |
+
| [fr] dictionary: 44463 types
|
38 |
+
| Type the input sentence and press return:
|
39 |
+
Why is it rare to discover new marine mammal species?
|
40 |
+
S-0 Why is it rare to discover new marine mam@@ mal species ?
|
41 |
+
H-0 -0.0643349438905716 Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins?
|
42 |
+
P-0 -0.0763 -0.1849 -0.0956 -0.0946 -0.0735 -0.1150 -0.1301 -0.0042 -0.0321 -0.0171 -0.0052 -0.0062 -0.0015
|
43 |
+
|
44 |
+
This generation script produces three types of outputs: a line prefixed
|
45 |
+
with *O* is a copy of the original source sentence; *H* is the
|
46 |
+
hypothesis along with an average log-likelihood; and *P* is the
|
47 |
+
positional score per token position, including the
|
48 |
+
end-of-sentence marker which is omitted from the text.
|
49 |
+
|
50 |
+
Other types of output lines you might see are *D*, the detokenized hypothesis,
|
51 |
+
*T*, the reference target, *A*, alignment info, *E* the history of generation steps.
|
52 |
+
|
53 |
+
See the `README <https://github.com/pytorch/fairseq#pre-trained-models>`__ for a
|
54 |
+
full list of pre-trained models available.
|
55 |
+
|
56 |
+
Training a New Model
|
57 |
+
====================
|
58 |
+
|
59 |
+
The following tutorial is for machine translation. For an example of how
|
60 |
+
to use Fairseq for other tasks, such as :ref:`language modeling`, please see the
|
61 |
+
``examples/`` directory.
|
62 |
+
|
63 |
+
Data Pre-processing
|
64 |
+
-------------------
|
65 |
+
|
66 |
+
Fairseq contains example pre-processing scripts for several translation
|
67 |
+
datasets: IWSLT 2014 (German-English), WMT 2014 (English-French) and WMT
|
68 |
+
2014 (English-German). To pre-process and binarize the IWSLT dataset:
|
69 |
+
|
70 |
+
.. code-block:: console
|
71 |
+
|
72 |
+
> cd examples/translation/
|
73 |
+
> bash prepare-iwslt14.sh
|
74 |
+
> cd ../..
|
75 |
+
> TEXT=examples/translation/iwslt14.tokenized.de-en
|
76 |
+
> fairseq-preprocess --source-lang de --target-lang en \
|
77 |
+
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
|
78 |
+
--destdir data-bin/iwslt14.tokenized.de-en
|
79 |
+
|
80 |
+
This will write binarized data that can be used for model training to
|
81 |
+
``data-bin/iwslt14.tokenized.de-en``.
|
82 |
+
|
83 |
+
Training
|
84 |
+
--------
|
85 |
+
|
86 |
+
Use :ref:`fairseq-train` to train a new model. Here a few example settings that work
|
87 |
+
well for the IWSLT 2014 dataset:
|
88 |
+
|
89 |
+
.. code-block:: console
|
90 |
+
|
91 |
+
> mkdir -p checkpoints/fconv
|
92 |
+
> CUDA_VISIBLE_DEVICES=0 fairseq-train data-bin/iwslt14.tokenized.de-en \
|
93 |
+
--optimizer nag --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
|
94 |
+
--arch fconv_iwslt_de_en --save-dir checkpoints/fconv
|
95 |
+
|
96 |
+
By default, :ref:`fairseq-train` will use all available GPUs on your machine. Use the
|
97 |
+
``CUDA_VISIBLE_DEVICES`` environment variable to select specific GPUs and/or to
|
98 |
+
change the number of GPU devices that will be used.
|
99 |
+
|
100 |
+
Also note that the batch size is specified in terms of the maximum
|
101 |
+
number of tokens per batch (``--max-tokens``). You may need to use a
|
102 |
+
smaller value depending on the available GPU memory on your system.
|
103 |
+
|
104 |
+
Generation
|
105 |
+
----------
|
106 |
+
|
107 |
+
Once your model is trained, you can generate translations using
|
108 |
+
:ref:`fairseq-generate` **(for binarized data)** or
|
109 |
+
:ref:`fairseq-interactive` **(for raw text)**:
|
110 |
+
|
111 |
+
.. code-block:: console
|
112 |
+
|
113 |
+
> fairseq-generate data-bin/iwslt14.tokenized.de-en \
|
114 |
+
--path checkpoints/fconv/checkpoint_best.pt \
|
115 |
+
--batch-size 128 --beam 5
|
116 |
+
| [de] dictionary: 35475 types
|
117 |
+
| [en] dictionary: 24739 types
|
118 |
+
| data-bin/iwslt14.tokenized.de-en test 6750 examples
|
119 |
+
| model fconv
|
120 |
+
| loaded checkpoint trainings/fconv/checkpoint_best.pt
|
121 |
+
S-721 danke .
|
122 |
+
T-721 thank you .
|
123 |
+
...
|
124 |
+
|
125 |
+
To generate translations with only a CPU, use the ``--cpu`` flag. BPE
|
126 |
+
continuation markers can be removed with the ``--remove-bpe`` flag.
|
127 |
+
|
128 |
+
Advanced Training Options
|
129 |
+
=========================
|
130 |
+
|
131 |
+
Large mini-batch training with delayed updates
|
132 |
+
----------------------------------------------
|
133 |
+
|
134 |
+
The ``--update-freq`` option can be used to accumulate gradients from
|
135 |
+
multiple mini-batches and delay updating, creating a larger effective
|
136 |
+
batch size. Delayed updates can also improve training speed by reducing
|
137 |
+
inter-GPU communication costs and by saving idle time caused by variance
|
138 |
+
in workload across GPUs. See `Ott et al.
|
139 |
+
(2018) <https://arxiv.org/abs/1806.00187>`__ for more details.
|
140 |
+
|
141 |
+
To train on a single GPU with an effective batch size that is equivalent
|
142 |
+
to training on 8 GPUs:
|
143 |
+
|
144 |
+
.. code-block:: console
|
145 |
+
|
146 |
+
> CUDA_VISIBLE_DEVICES=0 fairseq-train --update-freq 8 (...)
|
147 |
+
|
148 |
+
Training with half precision floating point (FP16)
|
149 |
+
--------------------------------------------------
|
150 |
+
|
151 |
+
.. note::
|
152 |
+
|
153 |
+
FP16 training requires a Volta GPU and CUDA 9.1 or greater
|
154 |
+
|
155 |
+
Recent GPUs enable efficient half precision floating point computation,
|
156 |
+
e.g., using `Nvidia Tensor Cores
|
157 |
+
<https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html>`__.
|
158 |
+
Fairseq supports FP16 training with the ``--fp16`` flag:
|
159 |
+
|
160 |
+
.. code-block:: console
|
161 |
+
|
162 |
+
> fairseq-train --fp16 (...)
|
163 |
+
|
164 |
+
Distributed training
|
165 |
+
--------------------
|
166 |
+
|
167 |
+
Distributed training in fairseq is implemented on top of ``torch.distributed``.
|
168 |
+
The easiest way to launch jobs is with the `torch.distributed.launch
|
169 |
+
<https://pytorch.org/docs/stable/distributed.html#launch-utility>`__ tool.
|
170 |
+
|
171 |
+
For example, to train a large English-German Transformer model on 2 nodes each
|
172 |
+
with 8 GPUs (in total 16 GPUs), run the following command on each node,
|
173 |
+
replacing ``node_rank=0`` with ``node_rank=1`` on the second node and making
|
174 |
+
sure to update ``--master_addr`` to the IP address of the first node:
|
175 |
+
|
176 |
+
.. code-block:: console
|
177 |
+
|
178 |
+
> python -m torch.distributed.launch --nproc_per_node=8 \
|
179 |
+
--nnodes=2 --node_rank=0 --master_addr="192.168.1.1" \
|
180 |
+
--master_port=12345 \
|
181 |
+
$(which fairseq-train) data-bin/wmt16_en_de_bpe32k \
|
182 |
+
--arch transformer_vaswani_wmt_en_de_big --share-all-embeddings \
|
183 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
184 |
+
--lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \
|
185 |
+
--lr 0.0005 \
|
186 |
+
--dropout 0.3 --weight-decay 0.0 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
187 |
+
--max-tokens 3584 \
|
188 |
+
--max-epoch 70 \
|
189 |
+
--fp16
|
190 |
+
|
191 |
+
On SLURM clusters, fairseq will automatically detect the number of nodes and
|
192 |
+
GPUs, but a port number must be provided:
|
193 |
+
|
194 |
+
.. code-block:: console
|
195 |
+
|
196 |
+
> salloc --gpus=16 --nodes 2 (...)
|
197 |
+
> srun fairseq-train --distributed-port 12345 (...).
|
198 |
+
|
199 |
+
Sharding very large datasets
|
200 |
+
----------------------------
|
201 |
+
|
202 |
+
It can be challenging to train over very large datasets, particularly if your
|
203 |
+
machine does not have much system RAM. Most tasks in fairseq support training
|
204 |
+
over "sharded" datasets, in which the original dataset has been preprocessed
|
205 |
+
into non-overlapping chunks (or "shards").
|
206 |
+
|
207 |
+
For example, instead of preprocessing all your data into a single "data-bin"
|
208 |
+
directory, you can split the data and create "data-bin1", "data-bin2", etc.
|
209 |
+
Then you can adapt your training command like so:
|
210 |
+
|
211 |
+
.. code-block:: console
|
212 |
+
|
213 |
+
> fairseq-train data-bin1:data-bin2:data-bin3 (...)
|
214 |
+
|
215 |
+
Training will now iterate over each shard, one by one, with each shard
|
216 |
+
corresponding to an "epoch", thus reducing system memory usage.
|
docs/hydra_integration.md
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Hydra
|
2 |
+
|
3 |
+
[Hydra](https://github.com/facebookresearch/hydra) is an open-source Python
|
4 |
+
framework that simplifies the development of research and other complex
|
5 |
+
applications. The key feature is the ability to dynamically create a
|
6 |
+
hierarchical configuration by composition and override it through config files
|
7 |
+
and the command line. The name Hydra comes from its ability to run multiple
|
8 |
+
similar jobs - much like a Hydra with multiple heads.
|
9 |
+
|
10 |
+
## Motivation
|
11 |
+
|
12 |
+
Until recently, all components in fairseq were configured through a shared
|
13 |
+
`args` namespace that was created at application startup. Components declared
|
14 |
+
their own `add_args` method to update the argparse parser, hoping that the names
|
15 |
+
would not clash with arguments from other components. While this model works for
|
16 |
+
smaller applications, as fairseq grew and became integrated into other
|
17 |
+
applications, this became problematic. In order to determine how to configure
|
18 |
+
each component, one needed to a) examine what args were added by this component,
|
19 |
+
and b) read the code to figure out what shared arguments it is using that were
|
20 |
+
added in other places. Reproducing models involved sharing commands that often
|
21 |
+
contained dozens of command line switches.
|
22 |
+
|
23 |
+
The model described above is still supported by fairseq for backward
|
24 |
+
compatibility, but will be deprecated some time in the future.
|
25 |
+
|
26 |
+
New components in fairseq should now create a dataclass that encapsulates all
|
27 |
+
parameters required to configure this component. The dataclass is registered
|
28 |
+
along with the component, and fairseq takes care of constructing and providing
|
29 |
+
this configuration object to the component's constructor. Note that sharing
|
30 |
+
parameters can optionally still work, but one has to explicitly point to the
|
31 |
+
"source of truth" (see inheritance example below). These changes make components
|
32 |
+
in fairseq more independent and re-usable by other applications: all that is
|
33 |
+
needed to create a component is to initialize its dataclass and overwrite some
|
34 |
+
of the defaults.
|
35 |
+
|
36 |
+
While configuring fairseq through command line (using either the legacy argparse
|
37 |
+
based or the new Hydra based entry points) is still fully supported, you can now
|
38 |
+
take advantage of configuring fairseq completely or piece-by-piece through
|
39 |
+
hierarchical YAML configuration files. These files can also be shipped as
|
40 |
+
examples that others can use to run an identically configured job.
|
41 |
+
|
42 |
+
Additionally, Hydra has a rich and growing [library of
|
43 |
+
plugins](https://github.com/facebookresearch/hydra/tree/master/plugins) that
|
44 |
+
provide functionality such as hyperparameter sweeping (including using bayesian
|
45 |
+
optimization through the [Ax](https://github.com/facebook/Ax) library), job
|
46 |
+
launching across various platforms, and more.
|
47 |
+
|
48 |
+
## Creating or migrating components
|
49 |
+
|
50 |
+
In general, each new (or updated) component should provide a companion
|
51 |
+
[dataclass](https://www.python.org/dev/peps/pep-0557/). These dataclass are
|
52 |
+
typically located in the same file as the component and are passed as arguments
|
53 |
+
to the `register_*()` functions. Top-level configs that should be present in
|
54 |
+
every fairseq application are placed in the
|
55 |
+
[global](fairseq/dataclass/configs.py) config file and added to the
|
56 |
+
`FairseqConfig` object.
|
57 |
+
|
58 |
+
Each dataclass is a plain-old-data object, similar to a `NamedTuple`. These
|
59 |
+
classes are decorated with a `@dataclass` decorator, and typically inherit from
|
60 |
+
`FairseqDataclass` (which adds some functionality for backward compatibility).
|
61 |
+
Each field must have a type, and generally has metadata (such as a help string)
|
62 |
+
and a default value. Only primitive types or other config objects are allowed as
|
63 |
+
data types for each field.
|
64 |
+
|
65 |
+
#### Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
from dataclasses import dataclass, field
|
69 |
+
from fairseq.dataclass import FairseqDataclass
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class InteractiveConfig(FairseqDataclass):
|
73 |
+
buffer_size: int = field(
|
74 |
+
default=0,
|
75 |
+
metadata={
|
76 |
+
"help": "read this many sentences into a buffer before processing them"
|
77 |
+
},
|
78 |
+
)
|
79 |
+
input: str = field(
|
80 |
+
default="-",
|
81 |
+
metadata={"help": "file to read from; use - for stdin"},
|
82 |
+
)
|
83 |
+
```
|
84 |
+
|
85 |
+
### Inherting values
|
86 |
+
|
87 |
+
Some components require sharing a value. For example, a learning rate scheduler
|
88 |
+
and an optimizer may both need to know the initial learning rate value. One can
|
89 |
+
declare a field that, by default, will inherit its value from another config
|
90 |
+
node in the same hierarchy:
|
91 |
+
|
92 |
+
```python
|
93 |
+
@dataclass
|
94 |
+
FairseqAdamConfig(FairseqDataclass):
|
95 |
+
...
|
96 |
+
lr: List[float] = II("optimization.lr")
|
97 |
+
...
|
98 |
+
```
|
99 |
+
|
100 |
+
`II("optimization.lr")` is syntactic sugar for `"${optimization.lr}"`, which is
|
101 |
+
the value one can use in a YAML config file or through command line to achieve
|
102 |
+
the same effect. Note that this assumes that there is an "optimization" config
|
103 |
+
object in the root config and it has a field called "lr".
|
104 |
+
|
105 |
+
### Tasks and Models
|
106 |
+
|
107 |
+
Creating Tasks and Models works same as before, except that legacy
|
108 |
+
implementations now inherit from `LegacyFairseq*` base classes, while new
|
109 |
+
components inherit from `FairseqTask` and `FairseqModel` and provide a dataclass
|
110 |
+
to the `register_*()` functions.
|
111 |
+
|
112 |
+
#### Task example:
|
113 |
+
|
114 |
+
```python
|
115 |
+
@dataclass
|
116 |
+
class LanguageModelingConfig(FairseqDataclass):
|
117 |
+
data: Optional[str] = field(
|
118 |
+
default=None, metadata={"help": "path to data directory"}
|
119 |
+
)
|
120 |
+
...
|
121 |
+
|
122 |
+
@register_task("language_modeling", dataclass=LanguageModelingConfig)
|
123 |
+
class LanguageModelingTask(FairseqTask):
|
124 |
+
...
|
125 |
+
@classmethod
|
126 |
+
def setup_task(cls, cfg: LanguageModelingConfig):
|
127 |
+
...
|
128 |
+
```
|
129 |
+
|
130 |
+
#### Model example:
|
131 |
+
|
132 |
+
```python
|
133 |
+
@dataclass
|
134 |
+
class TransformerLanguageModelConfig(FairseqDataclass):
|
135 |
+
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
|
136 |
+
default="relu", metadata={"help": "activation function to use"}
|
137 |
+
)
|
138 |
+
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
|
139 |
+
...
|
140 |
+
|
141 |
+
@register_model("transformer_lm", dataclass=TransformerLanguageModelConfig)
|
142 |
+
class TransformerLanguageModel(FairseqLanguageModel):
|
143 |
+
...
|
144 |
+
@classmethod
|
145 |
+
def build_model(cls, cfg: TransformerLanguageModelConfig, task: FairseqTask):
|
146 |
+
...
|
147 |
+
```
|
148 |
+
|
149 |
+
### Other components
|
150 |
+
|
151 |
+
Other components work as before, but they now take their configuration dataclass
|
152 |
+
as the only constructor argument:
|
153 |
+
|
154 |
+
```python
|
155 |
+
@dataclass
|
156 |
+
class MosesTokenizerConfig(FairseqDataclass):
|
157 |
+
source_lang: str = field(default="en", metadata={"help": "source language"})
|
158 |
+
...
|
159 |
+
|
160 |
+
@register_tokenizer("moses", dataclass=MosesTokenizerConfig)
|
161 |
+
class MosesTokenizer(object):
|
162 |
+
def __init__(self, cfg: MosesTokenizerConfig):
|
163 |
+
...
|
164 |
+
```
|
165 |
+
|
166 |
+
Note that if you are adding a new registry for a new set of components, you need
|
167 |
+
to add it to the `FairseqConfig` object in `fairseq/dataclass/configs.py`:
|
168 |
+
|
169 |
+
```python
|
170 |
+
@dataclass
|
171 |
+
class FairseqConfig(object):
|
172 |
+
...
|
173 |
+
my_new_registry: Any = None
|
174 |
+
```
|
175 |
+
|
176 |
+
## Training with `fairseq-hydra-train`
|
177 |
+
|
178 |
+
To fully take advantage of configuration flexibility offered by Hydra, you may
|
179 |
+
want to train new models using the `fairseq-hydra-train` entry point. Legacy CLI
|
180 |
+
tools such as `fairseq-train` will remain supported for the foreseeable future
|
181 |
+
but will be deprecated eventually.
|
182 |
+
|
183 |
+
On startup, Hydra will create a configuration object that contains a hierarchy
|
184 |
+
of all the necessary dataclasses populated with their default values in the
|
185 |
+
code. The default values are overwritten by values found in YAML files in
|
186 |
+
`fairseq/config` directory (which currently sets minimal defaults) and then
|
187 |
+
further overwritten by values provided through command line arguments.
|
188 |
+
|
189 |
+
Some of the most common use cases are shown below:
|
190 |
+
|
191 |
+
### 1. Override default values through command line:
|
192 |
+
|
193 |
+
```shell script
|
194 |
+
$ fairseq-hydra-train \
|
195 |
+
distributed_training.distributed_world_size=1 \
|
196 |
+
dataset.batch_size=2 \
|
197 |
+
task.data=data-bin \
|
198 |
+
model=transformer_lm/transformer_lm_gpt \
|
199 |
+
task=language_modeling \
|
200 |
+
optimization.max_update=5000
|
201 |
+
```
|
202 |
+
|
203 |
+
Note that along with explicitly providing values for parameters such as
|
204 |
+
`dataset.batch_size`, this also tells Hydra to overlay configuration found in
|
205 |
+
`fairseq/config/model/transformer_lm/transformer_lm_gpt.yaml` over the default
|
206 |
+
values in the dataclass. If you want to train a model without specifying a
|
207 |
+
particular architecture you can simply specify `model=transformer_lm`. This only
|
208 |
+
works for migrated tasks and models.
|
209 |
+
|
210 |
+
### 2. Replace bundled configs with an external config:
|
211 |
+
|
212 |
+
```shell script
|
213 |
+
$ fairseq-hydra-train \
|
214 |
+
--config-dir /path/to/external/configs \
|
215 |
+
--config-name wiki103
|
216 |
+
```
|
217 |
+
|
218 |
+
where `/path/to/external/configs/wiki103.yaml` contains:
|
219 |
+
|
220 |
+
```yaml
|
221 |
+
# @package _group_
|
222 |
+
|
223 |
+
model:
|
224 |
+
_name: transformer_lm
|
225 |
+
distributed_training:
|
226 |
+
distributed_world_size: 1
|
227 |
+
dataset:
|
228 |
+
batch_size: 2
|
229 |
+
task:
|
230 |
+
_name: language_modeling
|
231 |
+
data: /path/to/data
|
232 |
+
add_bos_token: false
|
233 |
+
max_target_positions: 1024
|
234 |
+
optimization:
|
235 |
+
max_update: 50000
|
236 |
+
lr: [ 0.25 ]
|
237 |
+
criterion: cross_entropy
|
238 |
+
optimizer: adam
|
239 |
+
lr_scheduler:
|
240 |
+
_name: cosine
|
241 |
+
```
|
242 |
+
|
243 |
+
Note that here bundled configs from `fairseq/config` directory are not used,
|
244 |
+
however the defaults from each dataclass will still be used (unless overwritten
|
245 |
+
by your external config).
|
246 |
+
|
247 |
+
Additionally you can choose to break up your configs by creating a directory
|
248 |
+
structure in the same location as your main config file, with the names of the
|
249 |
+
top-level fields (such as "model", "dataset", etc), and placing config files
|
250 |
+
with meaningful names that would populate that specific section of your
|
251 |
+
top-level config file (for example, you might have
|
252 |
+
`model/small_transformer_lm.yaml`, `model/big_transformer_lm.yaml`, etc). You
|
253 |
+
can then specify the correct configuration via command line, defaults in the
|
254 |
+
main config, or even launch all of them as a sweep (see Hydra documentation on
|
255 |
+
how to do this).
|
256 |
+
|
257 |
+
### 3. Add an external config directory to Hydra search path:
|
258 |
+
|
259 |
+
This allows combining default configuration (including using any bundled config
|
260 |
+
files), while specifying your own config files for some parts of the
|
261 |
+
configuration.
|
262 |
+
|
263 |
+
```shell script
|
264 |
+
$ fairseq-hydra-train \
|
265 |
+
distributed_training.distributed_world_size=1 \
|
266 |
+
dataset.batch_size=2 \
|
267 |
+
task.data=/path/to/data/ \
|
268 |
+
model=transformer_lm/2_layers \
|
269 |
+
task=language_modeling \
|
270 |
+
optimization.max_update=5000 \
|
271 |
+
--config-dir /path/to/external/configs
|
272 |
+
```
|
273 |
+
|
274 |
+
where `/path/to/external/configs` has the following structure:
|
275 |
+
```
|
276 |
+
.
|
277 |
+
+-- model
|
278 |
+
| +-- transformer_lm
|
279 |
+
| | +-- 2_layers.yaml
|
280 |
+
```
|
281 |
+
|
282 |
+
and `2_layers.yaml` contains a copy of `transformer_lm_gpt.yaml` but with
|
283 |
+
`decoder_layers` set to 2. You can add other configs to configure other
|
284 |
+
components as well.
|
docs/index.rst
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. fairseq documentation master file, created by
|
2 |
+
sphinx-quickstart on Fri Aug 17 21:45:30 2018.
|
3 |
+
You can adapt this file completely to your liking, but it should at least
|
4 |
+
contain the root `toctree` directive.
|
5 |
+
|
6 |
+
:github_url: https://github.com/pytorch/fairseq
|
7 |
+
|
8 |
+
|
9 |
+
fairseq documentation
|
10 |
+
=====================
|
11 |
+
|
12 |
+
Fairseq is a sequence modeling toolkit written in `PyTorch
|
13 |
+
<http://pytorch.org/>`_ that allows researchers and developers to
|
14 |
+
train custom models for translation, summarization, language modeling and other
|
15 |
+
text generation tasks.
|
16 |
+
|
17 |
+
.. toctree::
|
18 |
+
:maxdepth: 1
|
19 |
+
:caption: Getting Started
|
20 |
+
|
21 |
+
getting_started
|
22 |
+
command_line_tools
|
23 |
+
|
24 |
+
.. toctree::
|
25 |
+
:maxdepth: 1
|
26 |
+
:caption: Extending Fairseq
|
27 |
+
|
28 |
+
overview
|
29 |
+
tutorial_simple_lstm
|
30 |
+
tutorial_classifying_names
|
31 |
+
|
32 |
+
.. toctree::
|
33 |
+
:maxdepth: 2
|
34 |
+
:caption: Library Reference
|
35 |
+
|
36 |
+
tasks
|
37 |
+
models
|
38 |
+
criterions
|
39 |
+
optim
|
40 |
+
lr_scheduler
|
41 |
+
data
|
42 |
+
modules
|
43 |
+
|
44 |
+
|
45 |
+
Indices and tables
|
46 |
+
==================
|
47 |
+
|
48 |
+
* :ref:`genindex`
|
49 |
+
* :ref:`search`
|
docs/lr_scheduler.rst
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. role:: hidden
|
2 |
+
:class: hidden-section
|
3 |
+
|
4 |
+
.. _Learning Rate Schedulers:
|
5 |
+
|
6 |
+
Learning Rate Schedulers
|
7 |
+
========================
|
8 |
+
|
9 |
+
Learning Rate Schedulers update the learning rate over the course of training.
|
10 |
+
Learning rates can be updated after each update via :func:`step_update` or at
|
11 |
+
epoch boundaries via :func:`step`.
|
12 |
+
|
13 |
+
.. automodule:: fairseq.optim.lr_scheduler
|
14 |
+
:members:
|
15 |
+
|
16 |
+
.. autoclass:: fairseq.optim.lr_scheduler.FairseqLRScheduler
|
17 |
+
:members:
|
18 |
+
:undoc-members:
|
19 |
+
|
20 |
+
.. autoclass:: fairseq.optim.lr_scheduler.cosine_lr_scheduler.CosineSchedule
|
21 |
+
:members:
|
22 |
+
:undoc-members:
|
23 |
+
.. autoclass:: fairseq.optim.lr_scheduler.fixed_schedule.FixedSchedule
|
24 |
+
:members:
|
25 |
+
:undoc-members:
|
26 |
+
.. autoclass:: fairseq.optim.lr_scheduler.inverse_square_root_schedule.InverseSquareRootSchedule
|
27 |
+
:members:
|
28 |
+
:undoc-members:
|
29 |
+
.. autoclass:: fairseq.optim.lr_scheduler.reduce_lr_on_plateau.ReduceLROnPlateau
|
30 |
+
:members:
|
31 |
+
:undoc-members:
|
32 |
+
.. autoclass:: fairseq.optim.lr_scheduler.triangular_lr_scheduler.TriangularSchedule
|
33 |
+
:members:
|
34 |
+
:undoc-members:
|
docs/make.bat
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@ECHO OFF
|
2 |
+
|
3 |
+
pushd %~dp0
|
4 |
+
|
5 |
+
REM Command file for Sphinx documentation
|
6 |
+
|
7 |
+
if "%SPHINXBUILD%" == "" (
|
8 |
+
set SPHINXBUILD=python -msphinx
|
9 |
+
)
|
10 |
+
set SOURCEDIR=.
|
11 |
+
set BUILDDIR=_build
|
12 |
+
set SPHINXPROJ=fairseq
|
13 |
+
|
14 |
+
if "%1" == "" goto help
|
15 |
+
|
16 |
+
%SPHINXBUILD% >NUL 2>NUL
|
17 |
+
if errorlevel 9009 (
|
18 |
+
echo.
|
19 |
+
echo.The Sphinx module was not found. Make sure you have Sphinx installed,
|
20 |
+
echo.then set the SPHINXBUILD environment variable to point to the full
|
21 |
+
echo.path of the 'sphinx-build' executable. Alternatively you may add the
|
22 |
+
echo.Sphinx directory to PATH.
|
23 |
+
echo.
|
24 |
+
echo.If you don't have Sphinx installed, grab it from
|
25 |
+
echo.http://sphinx-doc.org/
|
26 |
+
exit /b 1
|
27 |
+
)
|
28 |
+
|
29 |
+
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
30 |
+
goto end
|
31 |
+
|
32 |
+
:help
|
33 |
+
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
34 |
+
|
35 |
+
:end
|
36 |
+
popd
|
docs/models.rst
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. role:: hidden
|
2 |
+
:class: hidden-section
|
3 |
+
|
4 |
+
.. module:: fairseq.models
|
5 |
+
|
6 |
+
.. _Models:
|
7 |
+
|
8 |
+
Models
|
9 |
+
======
|
10 |
+
|
11 |
+
A Model defines the neural network's ``forward()`` method and encapsulates all
|
12 |
+
of the learnable parameters in the network. Each model also provides a set of
|
13 |
+
named *architectures* that define the precise network configuration (e.g.,
|
14 |
+
embedding dimension, number of layers, etc.).
|
15 |
+
|
16 |
+
Both the model type and architecture are selected via the ``--arch``
|
17 |
+
command-line argument. Once selected, a model may expose additional command-line
|
18 |
+
arguments for further configuration.
|
19 |
+
|
20 |
+
.. note::
|
21 |
+
|
22 |
+
All fairseq Models extend :class:`BaseFairseqModel`, which in turn extends
|
23 |
+
:class:`torch.nn.Module`. Thus any fairseq Model can be used as a
|
24 |
+
stand-alone Module in other PyTorch code.
|
25 |
+
|
26 |
+
|
27 |
+
Convolutional Neural Networks (CNN)
|
28 |
+
-----------------------------------
|
29 |
+
|
30 |
+
.. module:: fairseq.models.fconv
|
31 |
+
.. autoclass:: fairseq.models.fconv.FConvModel
|
32 |
+
:members:
|
33 |
+
.. autoclass:: fairseq.models.fconv.FConvEncoder
|
34 |
+
:members:
|
35 |
+
:undoc-members:
|
36 |
+
.. autoclass:: fairseq.models.fconv.FConvDecoder
|
37 |
+
:members:
|
38 |
+
|
39 |
+
|
40 |
+
Long Short-Term Memory (LSTM) networks
|
41 |
+
--------------------------------------
|
42 |
+
|
43 |
+
.. module:: fairseq.models.lstm
|
44 |
+
.. autoclass:: fairseq.models.lstm.LSTMModel
|
45 |
+
:members:
|
46 |
+
.. autoclass:: fairseq.models.lstm.LSTMEncoder
|
47 |
+
:members:
|
48 |
+
.. autoclass:: fairseq.models.lstm.LSTMDecoder
|
49 |
+
:members:
|
50 |
+
|
51 |
+
|
52 |
+
Transformer (self-attention) networks
|
53 |
+
-------------------------------------
|
54 |
+
|
55 |
+
.. module:: fairseq.models.transformer
|
56 |
+
.. autoclass:: fairseq.models.transformer.TransformerModel
|
57 |
+
:members:
|
58 |
+
.. autoclass:: fairseq.models.transformer.TransformerEncoder
|
59 |
+
:members:
|
60 |
+
.. autoclass:: fairseq.models.transformer.TransformerEncoderLayer
|
61 |
+
:members:
|
62 |
+
.. autoclass:: fairseq.models.transformer.TransformerDecoder
|
63 |
+
:members:
|
64 |
+
.. autoclass:: fairseq.models.transformer.TransformerDecoderLayer
|
65 |
+
:members:
|
66 |
+
|
67 |
+
|
68 |
+
Adding new models
|
69 |
+
-----------------
|
70 |
+
|
71 |
+
.. currentmodule:: fairseq.models
|
72 |
+
.. autofunction:: fairseq.models.register_model
|
73 |
+
.. autofunction:: fairseq.models.register_model_architecture
|
74 |
+
.. autoclass:: fairseq.models.BaseFairseqModel
|
75 |
+
:members:
|
76 |
+
:undoc-members:
|
77 |
+
.. autoclass:: fairseq.models.FairseqEncoderDecoderModel
|
78 |
+
:members:
|
79 |
+
:undoc-members:
|
80 |
+
.. autoclass:: fairseq.models.FairseqEncoderModel
|
81 |
+
:members:
|
82 |
+
:undoc-members:
|
83 |
+
.. autoclass:: fairseq.models.FairseqLanguageModel
|
84 |
+
:members:
|
85 |
+
:undoc-members:
|
86 |
+
.. autoclass:: fairseq.models.FairseqMultiModel
|
87 |
+
:members:
|
88 |
+
:undoc-members:
|
89 |
+
.. autoclass:: fairseq.models.FairseqEncoder
|
90 |
+
:members:
|
91 |
+
.. autoclass:: fairseq.models.CompositeEncoder
|
92 |
+
:members:
|
93 |
+
.. autoclass:: fairseq.models.FairseqDecoder
|
94 |
+
:members:
|
95 |
+
|
96 |
+
|
97 |
+
.. _Incremental decoding:
|
98 |
+
|
99 |
+
Incremental decoding
|
100 |
+
--------------------
|
101 |
+
|
102 |
+
.. autoclass:: fairseq.models.FairseqIncrementalDecoder
|
103 |
+
:members:
|
104 |
+
:undoc-members:
|
docs/modules.rst
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Modules
|
2 |
+
=======
|
3 |
+
|
4 |
+
Fairseq provides several stand-alone :class:`torch.nn.Module` classes that may
|
5 |
+
be helpful when implementing a new :class:`~fairseq.models.BaseFairseqModel`.
|
6 |
+
|
7 |
+
.. automodule:: fairseq.modules
|
8 |
+
:members:
|
9 |
+
:undoc-members:
|
docs/optim.rst
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. role:: hidden
|
2 |
+
:class: hidden-section
|
3 |
+
|
4 |
+
.. _optimizers:
|
5 |
+
|
6 |
+
Optimizers
|
7 |
+
==========
|
8 |
+
|
9 |
+
Optimizers update the Model parameters based on the gradients.
|
10 |
+
|
11 |
+
.. automodule:: fairseq.optim
|
12 |
+
:members:
|
13 |
+
|
14 |
+
.. autoclass:: fairseq.optim.FairseqOptimizer
|
15 |
+
:members:
|
16 |
+
:undoc-members:
|
17 |
+
|
18 |
+
.. autoclass:: fairseq.optim.adadelta.Adadelta
|
19 |
+
:members:
|
20 |
+
:undoc-members:
|
21 |
+
.. autoclass:: fairseq.optim.adagrad.Adagrad
|
22 |
+
:members:
|
23 |
+
:undoc-members:
|
24 |
+
.. autoclass:: fairseq.optim.adafactor.FairseqAdafactor
|
25 |
+
:members:
|
26 |
+
:undoc-members:
|
27 |
+
.. autoclass:: fairseq.optim.adam.FairseqAdam
|
28 |
+
:members:
|
29 |
+
:undoc-members:
|
30 |
+
.. autoclass:: fairseq.optim.fp16_optimizer.FP16Optimizer
|
31 |
+
:members:
|
32 |
+
:undoc-members:
|
33 |
+
.. autoclass:: fairseq.optim.nag.FairseqNAG
|
34 |
+
:members:
|
35 |
+
:undoc-members:
|
36 |
+
.. autoclass:: fairseq.optim.sgd.SGD
|
37 |
+
:members:
|
38 |
+
:undoc-members:
|
docs/overview.rst
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Overview
|
2 |
+
========
|
3 |
+
|
4 |
+
Fairseq can be extended through user-supplied `plug-ins
|
5 |
+
<https://en.wikipedia.org/wiki/Plug-in_(computing)>`_. We support five kinds of
|
6 |
+
plug-ins:
|
7 |
+
|
8 |
+
- :ref:`Models` define the neural network architecture and encapsulate all of the
|
9 |
+
learnable parameters.
|
10 |
+
- :ref:`Criterions` compute the loss function given the model outputs and targets.
|
11 |
+
- :ref:`Tasks` store dictionaries and provide helpers for loading/iterating over
|
12 |
+
Datasets, initializing the Model/Criterion and calculating the loss.
|
13 |
+
- :ref:`Optimizers` update the Model parameters based on the gradients.
|
14 |
+
- :ref:`Learning Rate Schedulers` update the learning rate over the course of
|
15 |
+
training.
|
16 |
+
|
17 |
+
**Training Flow**
|
18 |
+
|
19 |
+
Given a ``model``, ``criterion``, ``task``, ``optimizer`` and ``lr_scheduler``,
|
20 |
+
fairseq implements the following high-level training flow::
|
21 |
+
|
22 |
+
for epoch in range(num_epochs):
|
23 |
+
itr = task.get_batch_iterator(task.dataset('train'))
|
24 |
+
for num_updates, batch in enumerate(itr):
|
25 |
+
task.train_step(batch, model, criterion, optimizer)
|
26 |
+
average_and_clip_gradients()
|
27 |
+
optimizer.step()
|
28 |
+
lr_scheduler.step_update(num_updates)
|
29 |
+
lr_scheduler.step(epoch)
|
30 |
+
|
31 |
+
where the default implementation for ``task.train_step`` is roughly::
|
32 |
+
|
33 |
+
def train_step(self, batch, model, criterion, optimizer, **unused):
|
34 |
+
loss = criterion(model, batch)
|
35 |
+
optimizer.backward(loss)
|
36 |
+
return loss
|
37 |
+
|
38 |
+
**Registering new plug-ins**
|
39 |
+
|
40 |
+
New plug-ins are *registered* through a set of ``@register`` function
|
41 |
+
decorators, for example::
|
42 |
+
|
43 |
+
@register_model('my_lstm')
|
44 |
+
class MyLSTM(FairseqEncoderDecoderModel):
|
45 |
+
(...)
|
46 |
+
|
47 |
+
Once registered, new plug-ins can be used with the existing :ref:`Command-line
|
48 |
+
Tools`. See the Tutorial sections for more detailed walkthroughs of how to add
|
49 |
+
new plug-ins.
|
50 |
+
|
51 |
+
**Loading plug-ins from another directory**
|
52 |
+
|
53 |
+
New plug-ins can be defined in a custom module stored in the user system. In
|
54 |
+
order to import the module, and make the plugin available to *fairseq*, the
|
55 |
+
command line supports the ``--user-dir`` flag that can be used to specify a
|
56 |
+
custom location for additional modules to load into *fairseq*.
|
57 |
+
|
58 |
+
For example, assuming this directory tree::
|
59 |
+
|
60 |
+
/home/user/my-module/
|
61 |
+
└── __init__.py
|
62 |
+
|
63 |
+
with ``__init__.py``::
|
64 |
+
|
65 |
+
from fairseq.models import register_model_architecture
|
66 |
+
from fairseq.models.transformer import transformer_vaswani_wmt_en_de_big
|
67 |
+
|
68 |
+
@register_model_architecture('transformer', 'my_transformer')
|
69 |
+
def transformer_mmt_big(args):
|
70 |
+
transformer_vaswani_wmt_en_de_big(args)
|
71 |
+
|
72 |
+
it is possible to invoke the :ref:`fairseq-train` script with the new architecture with::
|
73 |
+
|
74 |
+
fairseq-train ... --user-dir /home/user/my-module -a my_transformer --task translation
|
docs/requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
sphinx<2.0
|
2 |
+
sphinx-argparse
|
docs/tasks.rst
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. role:: hidden
|
2 |
+
:class: hidden-section
|
3 |
+
|
4 |
+
.. module:: fairseq.tasks
|
5 |
+
|
6 |
+
.. _Tasks:
|
7 |
+
|
8 |
+
Tasks
|
9 |
+
=====
|
10 |
+
|
11 |
+
Tasks store dictionaries and provide helpers for loading/iterating over
|
12 |
+
Datasets, initializing the Model/Criterion and calculating the loss.
|
13 |
+
|
14 |
+
Tasks can be selected via the ``--task`` command-line argument. Once selected, a
|
15 |
+
task may expose additional command-line arguments for further configuration.
|
16 |
+
|
17 |
+
Example usage::
|
18 |
+
|
19 |
+
# setup the task (e.g., load dictionaries)
|
20 |
+
task = fairseq.tasks.setup_task(args)
|
21 |
+
|
22 |
+
# build model and criterion
|
23 |
+
model = task.build_model(args)
|
24 |
+
criterion = task.build_criterion(args)
|
25 |
+
|
26 |
+
# load datasets
|
27 |
+
task.load_dataset('train')
|
28 |
+
task.load_dataset('valid')
|
29 |
+
|
30 |
+
# iterate over mini-batches of data
|
31 |
+
batch_itr = task.get_batch_iterator(
|
32 |
+
task.dataset('train'), max_tokens=4096,
|
33 |
+
)
|
34 |
+
for batch in batch_itr:
|
35 |
+
# compute the loss
|
36 |
+
loss, sample_size, logging_output = task.get_loss(
|
37 |
+
model, criterion, batch,
|
38 |
+
)
|
39 |
+
loss.backward()
|
40 |
+
|
41 |
+
|
42 |
+
Translation
|
43 |
+
-----------
|
44 |
+
|
45 |
+
.. autoclass:: fairseq.tasks.translation.TranslationTask
|
46 |
+
|
47 |
+
.. _language modeling:
|
48 |
+
|
49 |
+
Language Modeling
|
50 |
+
-----------------
|
51 |
+
|
52 |
+
.. autoclass:: fairseq.tasks.language_modeling.LanguageModelingTask
|
53 |
+
|
54 |
+
|
55 |
+
Adding new tasks
|
56 |
+
----------------
|
57 |
+
|
58 |
+
.. autofunction:: fairseq.tasks.register_task
|
59 |
+
.. autoclass:: fairseq.tasks.FairseqTask
|
60 |
+
:members:
|
61 |
+
:undoc-members:
|
docs/tutorial_classifying_names.rst
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Tutorial: Classifying Names with a Character-Level RNN
|
2 |
+
======================================================
|
3 |
+
|
4 |
+
In this tutorial we will extend fairseq to support *classification* tasks. In
|
5 |
+
particular we will re-implement the PyTorch tutorial for `Classifying Names with
|
6 |
+
a Character-Level RNN <https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html>`_
|
7 |
+
in fairseq. It is recommended to quickly skim that tutorial before beginning
|
8 |
+
this one.
|
9 |
+
|
10 |
+
This tutorial covers:
|
11 |
+
|
12 |
+
1. **Preprocessing the data** to create dictionaries.
|
13 |
+
2. **Registering a new Model** that encodes an input sentence with a simple RNN
|
14 |
+
and predicts the output label.
|
15 |
+
3. **Registering a new Task** that loads our dictionaries and dataset.
|
16 |
+
4. **Training the Model** using the existing command-line tools.
|
17 |
+
5. **Writing an evaluation script** that imports fairseq and allows us to
|
18 |
+
interactively evaluate our model on new inputs.
|
19 |
+
|
20 |
+
|
21 |
+
1. Preprocessing the data
|
22 |
+
-------------------------
|
23 |
+
|
24 |
+
The original tutorial provides raw data, but we'll work with a modified version
|
25 |
+
of the data that is already tokenized into characters and split into separate
|
26 |
+
train, valid and test sets.
|
27 |
+
|
28 |
+
Download and extract the data from here:
|
29 |
+
`tutorial_names.tar.gz <https://dl.fbaipublicfiles.com/fairseq/data/tutorial_names.tar.gz>`_
|
30 |
+
|
31 |
+
Once extracted, let's preprocess the data using the :ref:`fairseq-preprocess`
|
32 |
+
command-line tool to create the dictionaries. While this tool is primarily
|
33 |
+
intended for sequence-to-sequence problems, we're able to reuse it here by
|
34 |
+
treating the label as a "target" sequence of length 1. We'll also output the
|
35 |
+
preprocessed files in "raw" format using the ``--dataset-impl`` option to
|
36 |
+
enhance readability:
|
37 |
+
|
38 |
+
.. code-block:: console
|
39 |
+
|
40 |
+
> fairseq-preprocess \
|
41 |
+
--trainpref names/train --validpref names/valid --testpref names/test \
|
42 |
+
--source-lang input --target-lang label \
|
43 |
+
--destdir names-bin --dataset-impl raw
|
44 |
+
|
45 |
+
After running the above command you should see a new directory,
|
46 |
+
:file:`names-bin/`, containing the dictionaries for *inputs* and *labels*.
|
47 |
+
|
48 |
+
|
49 |
+
2. Registering a new Model
|
50 |
+
--------------------------
|
51 |
+
|
52 |
+
Next we'll register a new model in fairseq that will encode an input sentence
|
53 |
+
with a simple RNN and predict the output label. Compared to the original PyTorch
|
54 |
+
tutorial, our version will also work with batches of data and GPU Tensors.
|
55 |
+
|
56 |
+
First let's copy the simple RNN module implemented in the `PyTorch tutorial
|
57 |
+
<https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html#creating-the-network>`_.
|
58 |
+
Create a new file named :file:`fairseq/models/rnn_classifier.py` with the
|
59 |
+
following contents::
|
60 |
+
|
61 |
+
import torch
|
62 |
+
import torch.nn as nn
|
63 |
+
|
64 |
+
class RNN(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, input_size, hidden_size, output_size):
|
67 |
+
super(RNN, self).__init__()
|
68 |
+
|
69 |
+
self.hidden_size = hidden_size
|
70 |
+
|
71 |
+
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
|
72 |
+
self.i2o = nn.Linear(input_size + hidden_size, output_size)
|
73 |
+
self.softmax = nn.LogSoftmax(dim=1)
|
74 |
+
|
75 |
+
def forward(self, input, hidden):
|
76 |
+
combined = torch.cat((input, hidden), 1)
|
77 |
+
hidden = self.i2h(combined)
|
78 |
+
output = self.i2o(combined)
|
79 |
+
output = self.softmax(output)
|
80 |
+
return output, hidden
|
81 |
+
|
82 |
+
def initHidden(self):
|
83 |
+
return torch.zeros(1, self.hidden_size)
|
84 |
+
|
85 |
+
We must also *register* this model with fairseq using the
|
86 |
+
:func:`~fairseq.models.register_model` function decorator. Once the model is
|
87 |
+
registered we'll be able to use it with the existing :ref:`Command-line Tools`.
|
88 |
+
|
89 |
+
All registered models must implement the :class:`~fairseq.models.BaseFairseqModel`
|
90 |
+
interface, so we'll create a small wrapper class in the same file and register
|
91 |
+
it in fairseq with the name ``'rnn_classifier'``::
|
92 |
+
|
93 |
+
from fairseq.models import BaseFairseqModel, register_model
|
94 |
+
|
95 |
+
# Note: the register_model "decorator" should immediately precede the
|
96 |
+
# definition of the Model class.
|
97 |
+
|
98 |
+
@register_model('rnn_classifier')
|
99 |
+
class FairseqRNNClassifier(BaseFairseqModel):
|
100 |
+
|
101 |
+
@staticmethod
|
102 |
+
def add_args(parser):
|
103 |
+
# Models can override this method to add new command-line arguments.
|
104 |
+
# Here we'll add a new command-line argument to configure the
|
105 |
+
# dimensionality of the hidden state.
|
106 |
+
parser.add_argument(
|
107 |
+
'--hidden-dim', type=int, metavar='N',
|
108 |
+
help='dimensionality of the hidden state',
|
109 |
+
)
|
110 |
+
|
111 |
+
@classmethod
|
112 |
+
def build_model(cls, args, task):
|
113 |
+
# Fairseq initializes models by calling the ``build_model()``
|
114 |
+
# function. This provides more flexibility, since the returned model
|
115 |
+
# instance can be of a different type than the one that was called.
|
116 |
+
# In this case we'll just return a FairseqRNNClassifier instance.
|
117 |
+
|
118 |
+
# Initialize our RNN module
|
119 |
+
rnn = RNN(
|
120 |
+
# We'll define the Task in the next section, but for now just
|
121 |
+
# notice that the task holds the dictionaries for the "source"
|
122 |
+
# (i.e., the input sentence) and "target" (i.e., the label).
|
123 |
+
input_size=len(task.source_dictionary),
|
124 |
+
hidden_size=args.hidden_dim,
|
125 |
+
output_size=len(task.target_dictionary),
|
126 |
+
)
|
127 |
+
|
128 |
+
# Return the wrapped version of the module
|
129 |
+
return FairseqRNNClassifier(
|
130 |
+
rnn=rnn,
|
131 |
+
input_vocab=task.source_dictionary,
|
132 |
+
)
|
133 |
+
|
134 |
+
def __init__(self, rnn, input_vocab):
|
135 |
+
super(FairseqRNNClassifier, self).__init__()
|
136 |
+
|
137 |
+
self.rnn = rnn
|
138 |
+
self.input_vocab = input_vocab
|
139 |
+
|
140 |
+
# The RNN module in the tutorial expects one-hot inputs, so we can
|
141 |
+
# precompute the identity matrix to help convert from indices to
|
142 |
+
# one-hot vectors. We register it as a buffer so that it is moved to
|
143 |
+
# the GPU when ``cuda()`` is called.
|
144 |
+
self.register_buffer('one_hot_inputs', torch.eye(len(input_vocab)))
|
145 |
+
|
146 |
+
def forward(self, src_tokens, src_lengths):
|
147 |
+
# The inputs to the ``forward()`` function are determined by the
|
148 |
+
# Task, and in particular the ``'net_input'`` key in each
|
149 |
+
# mini-batch. We'll define the Task in the next section, but for
|
150 |
+
# now just know that *src_tokens* has shape `(batch, src_len)` and
|
151 |
+
# *src_lengths* has shape `(batch)`.
|
152 |
+
bsz, max_src_len = src_tokens.size()
|
153 |
+
|
154 |
+
# Initialize the RNN hidden state. Compared to the original PyTorch
|
155 |
+
# tutorial we'll also handle batched inputs and work on the GPU.
|
156 |
+
hidden = self.rnn.initHidden()
|
157 |
+
hidden = hidden.repeat(bsz, 1) # expand for batched inputs
|
158 |
+
hidden = hidden.to(src_tokens.device) # move to GPU
|
159 |
+
|
160 |
+
for i in range(max_src_len):
|
161 |
+
# WARNING: The inputs have padding, so we should mask those
|
162 |
+
# elements here so that padding doesn't affect the results.
|
163 |
+
# This is left as an exercise for the reader. The padding symbol
|
164 |
+
# is given by ``self.input_vocab.pad()`` and the unpadded length
|
165 |
+
# of each input is given by *src_lengths*.
|
166 |
+
|
167 |
+
# One-hot encode a batch of input characters.
|
168 |
+
input = self.one_hot_inputs[src_tokens[:, i].long()]
|
169 |
+
|
170 |
+
# Feed the input to our RNN.
|
171 |
+
output, hidden = self.rnn(input, hidden)
|
172 |
+
|
173 |
+
# Return the final output state for making a prediction
|
174 |
+
return output
|
175 |
+
|
176 |
+
Finally let's define a *named architecture* with the configuration for our
|
177 |
+
model. This is done with the :func:`~fairseq.models.register_model_architecture`
|
178 |
+
function decorator. Thereafter this named architecture can be used with the
|
179 |
+
``--arch`` command-line argument, e.g., ``--arch pytorch_tutorial_rnn``::
|
180 |
+
|
181 |
+
from fairseq.models import register_model_architecture
|
182 |
+
|
183 |
+
# The first argument to ``register_model_architecture()`` should be the name
|
184 |
+
# of the model we registered above (i.e., 'rnn_classifier'). The function we
|
185 |
+
# register here should take a single argument *args* and modify it in-place
|
186 |
+
# to match the desired architecture.
|
187 |
+
|
188 |
+
@register_model_architecture('rnn_classifier', 'pytorch_tutorial_rnn')
|
189 |
+
def pytorch_tutorial_rnn(args):
|
190 |
+
# We use ``getattr()`` to prioritize arguments that are explicitly given
|
191 |
+
# on the command-line, so that the defaults defined below are only used
|
192 |
+
# when no other value has been specified.
|
193 |
+
args.hidden_dim = getattr(args, 'hidden_dim', 128)
|
194 |
+
|
195 |
+
|
196 |
+
3. Registering a new Task
|
197 |
+
-------------------------
|
198 |
+
|
199 |
+
Now we'll register a new :class:`~fairseq.tasks.FairseqTask` that will load our
|
200 |
+
dictionaries and dataset. Tasks can also control how the data is batched into
|
201 |
+
mini-batches, but in this tutorial we'll reuse the batching provided by
|
202 |
+
:class:`fairseq.data.LanguagePairDataset`.
|
203 |
+
|
204 |
+
Create a new file named :file:`fairseq/tasks/simple_classification.py` with the
|
205 |
+
following contents::
|
206 |
+
|
207 |
+
import os
|
208 |
+
import torch
|
209 |
+
|
210 |
+
from fairseq.data import Dictionary, LanguagePairDataset
|
211 |
+
from fairseq.tasks import FairseqTask, register_task
|
212 |
+
|
213 |
+
|
214 |
+
@register_task('simple_classification')
|
215 |
+
class SimpleClassificationTask(LegacyFairseqTask):
|
216 |
+
|
217 |
+
@staticmethod
|
218 |
+
def add_args(parser):
|
219 |
+
# Add some command-line arguments for specifying where the data is
|
220 |
+
# located and the maximum supported input length.
|
221 |
+
parser.add_argument('data', metavar='FILE',
|
222 |
+
help='file prefix for data')
|
223 |
+
parser.add_argument('--max-positions', default=1024, type=int,
|
224 |
+
help='max input length')
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def setup_task(cls, args, **kwargs):
|
228 |
+
# Here we can perform any setup required for the task. This may include
|
229 |
+
# loading Dictionaries, initializing shared Embedding layers, etc.
|
230 |
+
# In this case we'll just load the Dictionaries.
|
231 |
+
input_vocab = Dictionary.load(os.path.join(args.data, 'dict.input.txt'))
|
232 |
+
label_vocab = Dictionary.load(os.path.join(args.data, 'dict.label.txt'))
|
233 |
+
print('| [input] dictionary: {} types'.format(len(input_vocab)))
|
234 |
+
print('| [label] dictionary: {} types'.format(len(label_vocab)))
|
235 |
+
|
236 |
+
return SimpleClassificationTask(args, input_vocab, label_vocab)
|
237 |
+
|
238 |
+
def __init__(self, args, input_vocab, label_vocab):
|
239 |
+
super().__init__(args)
|
240 |
+
self.input_vocab = input_vocab
|
241 |
+
self.label_vocab = label_vocab
|
242 |
+
|
243 |
+
def load_dataset(self, split, **kwargs):
|
244 |
+
"""Load a given dataset split (e.g., train, valid, test)."""
|
245 |
+
|
246 |
+
prefix = os.path.join(self.args.data, '{}.input-label'.format(split))
|
247 |
+
|
248 |
+
# Read input sentences.
|
249 |
+
sentences, lengths = [], []
|
250 |
+
with open(prefix + '.input', encoding='utf-8') as file:
|
251 |
+
for line in file:
|
252 |
+
sentence = line.strip()
|
253 |
+
|
254 |
+
# Tokenize the sentence, splitting on spaces
|
255 |
+
tokens = self.input_vocab.encode_line(
|
256 |
+
sentence, add_if_not_exist=False,
|
257 |
+
)
|
258 |
+
|
259 |
+
sentences.append(tokens)
|
260 |
+
lengths.append(tokens.numel())
|
261 |
+
|
262 |
+
# Read labels.
|
263 |
+
labels = []
|
264 |
+
with open(prefix + '.label', encoding='utf-8') as file:
|
265 |
+
for line in file:
|
266 |
+
label = line.strip()
|
267 |
+
labels.append(
|
268 |
+
# Convert label to a numeric ID.
|
269 |
+
torch.LongTensor([self.label_vocab.add_symbol(label)])
|
270 |
+
)
|
271 |
+
|
272 |
+
assert len(sentences) == len(labels)
|
273 |
+
print('| {} {} {} examples'.format(self.args.data, split, len(sentences)))
|
274 |
+
|
275 |
+
# We reuse LanguagePairDataset since classification can be modeled as a
|
276 |
+
# sequence-to-sequence task where the target sequence has length 1.
|
277 |
+
self.datasets[split] = LanguagePairDataset(
|
278 |
+
src=sentences,
|
279 |
+
src_sizes=lengths,
|
280 |
+
src_dict=self.input_vocab,
|
281 |
+
tgt=labels,
|
282 |
+
tgt_sizes=torch.ones(len(labels)), # targets have length 1
|
283 |
+
tgt_dict=self.label_vocab,
|
284 |
+
left_pad_source=False,
|
285 |
+
# Since our target is a single class label, there's no need for
|
286 |
+
# teacher forcing. If we set this to ``True`` then our Model's
|
287 |
+
# ``forward()`` method would receive an additional argument called
|
288 |
+
# *prev_output_tokens* that would contain a shifted version of the
|
289 |
+
# target sequence.
|
290 |
+
input_feeding=False,
|
291 |
+
)
|
292 |
+
|
293 |
+
def max_positions(self):
|
294 |
+
"""Return the max input length allowed by the task."""
|
295 |
+
# The source should be less than *args.max_positions* and the "target"
|
296 |
+
# has max length 1.
|
297 |
+
return (self.args.max_positions, 1)
|
298 |
+
|
299 |
+
@property
|
300 |
+
def source_dictionary(self):
|
301 |
+
"""Return the source :class:`~fairseq.data.Dictionary`."""
|
302 |
+
return self.input_vocab
|
303 |
+
|
304 |
+
@property
|
305 |
+
def target_dictionary(self):
|
306 |
+
"""Return the target :class:`~fairseq.data.Dictionary`."""
|
307 |
+
return self.label_vocab
|
308 |
+
|
309 |
+
# We could override this method if we wanted more control over how batches
|
310 |
+
# are constructed, but it's not necessary for this tutorial since we can
|
311 |
+
# reuse the batching provided by LanguagePairDataset.
|
312 |
+
#
|
313 |
+
# def get_batch_iterator(
|
314 |
+
# self, dataset, max_tokens=None, max_sentences=None, max_positions=None,
|
315 |
+
# ignore_invalid_inputs=False, required_batch_size_multiple=1,
|
316 |
+
# seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1,
|
317 |
+
# data_buffer_size=0, disable_iterator_cache=False,
|
318 |
+
# ):
|
319 |
+
# (...)
|
320 |
+
|
321 |
+
|
322 |
+
4. Training the Model
|
323 |
+
---------------------
|
324 |
+
|
325 |
+
Now we're ready to train the model. We can use the existing :ref:`fairseq-train`
|
326 |
+
command-line tool for this, making sure to specify our new Task (``--task
|
327 |
+
simple_classification``) and Model architecture (``--arch
|
328 |
+
pytorch_tutorial_rnn``):
|
329 |
+
|
330 |
+
.. note::
|
331 |
+
|
332 |
+
You can also configure the dimensionality of the hidden state by passing the
|
333 |
+
``--hidden-dim`` argument to :ref:`fairseq-train`.
|
334 |
+
|
335 |
+
.. code-block:: console
|
336 |
+
|
337 |
+
> fairseq-train names-bin \
|
338 |
+
--task simple_classification \
|
339 |
+
--arch pytorch_tutorial_rnn \
|
340 |
+
--optimizer adam --lr 0.001 --lr-shrink 0.5 \
|
341 |
+
--max-tokens 1000
|
342 |
+
(...)
|
343 |
+
| epoch 027 | loss 1.200 | ppl 2.30 | wps 15728 | ups 119.4 | wpb 116 | bsz 116 | num_updates 3726 | lr 1.5625e-05 | gnorm 1.290 | clip 0% | oom 0 | wall 32 | train_wall 21
|
344 |
+
| epoch 027 | valid on 'valid' subset | valid_loss 1.41304 | valid_ppl 2.66 | num_updates 3726 | best 1.41208
|
345 |
+
| done training in 31.6 seconds
|
346 |
+
|
347 |
+
The model files should appear in the :file:`checkpoints/` directory.
|
348 |
+
|
349 |
+
|
350 |
+
5. Writing an evaluation script
|
351 |
+
-------------------------------
|
352 |
+
|
353 |
+
Finally we can write a short script to evaluate our model on new inputs. Create
|
354 |
+
a new file named :file:`eval_classifier.py` with the following contents::
|
355 |
+
|
356 |
+
from fairseq import checkpoint_utils, data, options, tasks
|
357 |
+
|
358 |
+
# Parse command-line arguments for generation
|
359 |
+
parser = options.get_generation_parser(default_task='simple_classification')
|
360 |
+
args = options.parse_args_and_arch(parser)
|
361 |
+
|
362 |
+
# Setup task
|
363 |
+
task = tasks.setup_task(args)
|
364 |
+
|
365 |
+
# Load model
|
366 |
+
print('| loading model from {}'.format(args.path))
|
367 |
+
models, _model_args = checkpoint_utils.load_model_ensemble([args.path], task=task)
|
368 |
+
model = models[0]
|
369 |
+
|
370 |
+
while True:
|
371 |
+
sentence = input('\nInput: ')
|
372 |
+
|
373 |
+
# Tokenize into characters
|
374 |
+
chars = ' '.join(list(sentence.strip()))
|
375 |
+
tokens = task.source_dictionary.encode_line(
|
376 |
+
chars, add_if_not_exist=False,
|
377 |
+
)
|
378 |
+
|
379 |
+
# Build mini-batch to feed to the model
|
380 |
+
batch = data.language_pair_dataset.collate(
|
381 |
+
samples=[{'id': -1, 'source': tokens}], # bsz = 1
|
382 |
+
pad_idx=task.source_dictionary.pad(),
|
383 |
+
eos_idx=task.source_dictionary.eos(),
|
384 |
+
left_pad_source=False,
|
385 |
+
input_feeding=False,
|
386 |
+
)
|
387 |
+
|
388 |
+
# Feed batch to the model and get predictions
|
389 |
+
preds = model(**batch['net_input'])
|
390 |
+
|
391 |
+
# Print top 3 predictions and their log-probabilities
|
392 |
+
top_scores, top_labels = preds[0].topk(k=3)
|
393 |
+
for score, label_idx in zip(top_scores, top_labels):
|
394 |
+
label_name = task.target_dictionary.string([label_idx])
|
395 |
+
print('({:.2f})\t{}'.format(score, label_name))
|
396 |
+
|
397 |
+
Now we can evaluate our model interactively. Note that we have included the
|
398 |
+
original data path (:file:`names-bin/`) so that the dictionaries can be loaded:
|
399 |
+
|
400 |
+
.. code-block:: console
|
401 |
+
|
402 |
+
> python eval_classifier.py names-bin --path checkpoints/checkpoint_best.pt
|
403 |
+
| [input] dictionary: 64 types
|
404 |
+
| [label] dictionary: 24 types
|
405 |
+
| loading model from checkpoints/checkpoint_best.pt
|
406 |
+
|
407 |
+
Input: Satoshi
|
408 |
+
(-0.61) Japanese
|
409 |
+
(-1.20) Arabic
|
410 |
+
(-2.86) Italian
|
411 |
+
|
412 |
+
Input: Sinbad
|
413 |
+
(-0.30) Arabic
|
414 |
+
(-1.76) English
|
415 |
+
(-4.08) Russian
|
docs/tutorial_simple_lstm.rst
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Tutorial: Simple LSTM
|
2 |
+
=====================
|
3 |
+
|
4 |
+
In this tutorial we will extend fairseq by adding a new
|
5 |
+
:class:`~fairseq.models.FairseqEncoderDecoderModel` that encodes a source
|
6 |
+
sentence with an LSTM and then passes the final hidden state to a second LSTM
|
7 |
+
that decodes the target sentence (without attention).
|
8 |
+
|
9 |
+
This tutorial covers:
|
10 |
+
|
11 |
+
1. **Writing an Encoder and Decoder** to encode/decode the source/target
|
12 |
+
sentence, respectively.
|
13 |
+
2. **Registering a new Model** so that it can be used with the existing
|
14 |
+
:ref:`Command-line tools`.
|
15 |
+
3. **Training the Model** using the existing command-line tools.
|
16 |
+
4. **Making generation faster** by modifying the Decoder to use
|
17 |
+
:ref:`Incremental decoding`.
|
18 |
+
|
19 |
+
|
20 |
+
1. Building an Encoder and Decoder
|
21 |
+
----------------------------------
|
22 |
+
|
23 |
+
In this section we'll define a simple LSTM Encoder and Decoder. All Encoders
|
24 |
+
should implement the :class:`~fairseq.models.FairseqEncoder` interface and
|
25 |
+
Decoders should implement the :class:`~fairseq.models.FairseqDecoder` interface.
|
26 |
+
These interfaces themselves extend :class:`torch.nn.Module`, so FairseqEncoders
|
27 |
+
and FairseqDecoders can be written and used in the same ways as ordinary PyTorch
|
28 |
+
Modules.
|
29 |
+
|
30 |
+
|
31 |
+
Encoder
|
32 |
+
~~~~~~~
|
33 |
+
|
34 |
+
Our Encoder will embed the tokens in the source sentence, feed them to a
|
35 |
+
:class:`torch.nn.LSTM` and return the final hidden state. To create our encoder
|
36 |
+
save the following in a new file named :file:`fairseq/models/simple_lstm.py`::
|
37 |
+
|
38 |
+
import torch.nn as nn
|
39 |
+
from fairseq import utils
|
40 |
+
from fairseq.models import FairseqEncoder
|
41 |
+
|
42 |
+
class SimpleLSTMEncoder(FairseqEncoder):
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self, args, dictionary, embed_dim=128, hidden_dim=128, dropout=0.1,
|
46 |
+
):
|
47 |
+
super().__init__(dictionary)
|
48 |
+
self.args = args
|
49 |
+
|
50 |
+
# Our encoder will embed the inputs before feeding them to the LSTM.
|
51 |
+
self.embed_tokens = nn.Embedding(
|
52 |
+
num_embeddings=len(dictionary),
|
53 |
+
embedding_dim=embed_dim,
|
54 |
+
padding_idx=dictionary.pad(),
|
55 |
+
)
|
56 |
+
self.dropout = nn.Dropout(p=dropout)
|
57 |
+
|
58 |
+
# We'll use a single-layer, unidirectional LSTM for simplicity.
|
59 |
+
self.lstm = nn.LSTM(
|
60 |
+
input_size=embed_dim,
|
61 |
+
hidden_size=hidden_dim,
|
62 |
+
num_layers=1,
|
63 |
+
bidirectional=False,
|
64 |
+
batch_first=True,
|
65 |
+
)
|
66 |
+
|
67 |
+
def forward(self, src_tokens, src_lengths):
|
68 |
+
# The inputs to the ``forward()`` function are determined by the
|
69 |
+
# Task, and in particular the ``'net_input'`` key in each
|
70 |
+
# mini-batch. We discuss Tasks in the next tutorial, but for now just
|
71 |
+
# know that *src_tokens* has shape `(batch, src_len)` and *src_lengths*
|
72 |
+
# has shape `(batch)`.
|
73 |
+
|
74 |
+
# Note that the source is typically padded on the left. This can be
|
75 |
+
# configured by adding the `--left-pad-source "False"` command-line
|
76 |
+
# argument, but here we'll make the Encoder handle either kind of
|
77 |
+
# padding by converting everything to be right-padded.
|
78 |
+
if self.args.left_pad_source:
|
79 |
+
# Convert left-padding to right-padding.
|
80 |
+
src_tokens = utils.convert_padding_direction(
|
81 |
+
src_tokens,
|
82 |
+
padding_idx=self.dictionary.pad(),
|
83 |
+
left_to_right=True
|
84 |
+
)
|
85 |
+
|
86 |
+
# Embed the source.
|
87 |
+
x = self.embed_tokens(src_tokens)
|
88 |
+
|
89 |
+
# Apply dropout.
|
90 |
+
x = self.dropout(x)
|
91 |
+
|
92 |
+
# Pack the sequence into a PackedSequence object to feed to the LSTM.
|
93 |
+
x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True)
|
94 |
+
|
95 |
+
# Get the output from the LSTM.
|
96 |
+
_outputs, (final_hidden, _final_cell) = self.lstm(x)
|
97 |
+
|
98 |
+
# Return the Encoder's output. This can be any object and will be
|
99 |
+
# passed directly to the Decoder.
|
100 |
+
return {
|
101 |
+
# this will have shape `(bsz, hidden_dim)`
|
102 |
+
'final_hidden': final_hidden.squeeze(0),
|
103 |
+
}
|
104 |
+
|
105 |
+
# Encoders are required to implement this method so that we can rearrange
|
106 |
+
# the order of the batch elements during inference (e.g., beam search).
|
107 |
+
def reorder_encoder_out(self, encoder_out, new_order):
|
108 |
+
"""
|
109 |
+
Reorder encoder output according to `new_order`.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
encoder_out: output from the ``forward()`` method
|
113 |
+
new_order (LongTensor): desired order
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
`encoder_out` rearranged according to `new_order`
|
117 |
+
"""
|
118 |
+
final_hidden = encoder_out['final_hidden']
|
119 |
+
return {
|
120 |
+
'final_hidden': final_hidden.index_select(0, new_order),
|
121 |
+
}
|
122 |
+
|
123 |
+
|
124 |
+
Decoder
|
125 |
+
~~~~~~~
|
126 |
+
|
127 |
+
Our Decoder will predict the next word, conditioned on the Encoder's final
|
128 |
+
hidden state and an embedded representation of the previous target word -- which
|
129 |
+
is sometimes called *teacher forcing*. More specifically, we'll use a
|
130 |
+
:class:`torch.nn.LSTM` to produce a sequence of hidden states that we'll project
|
131 |
+
to the size of the output vocabulary to predict each target word.
|
132 |
+
|
133 |
+
::
|
134 |
+
|
135 |
+
import torch
|
136 |
+
from fairseq.models import FairseqDecoder
|
137 |
+
|
138 |
+
class SimpleLSTMDecoder(FairseqDecoder):
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self, dictionary, encoder_hidden_dim=128, embed_dim=128, hidden_dim=128,
|
142 |
+
dropout=0.1,
|
143 |
+
):
|
144 |
+
super().__init__(dictionary)
|
145 |
+
|
146 |
+
# Our decoder will embed the inputs before feeding them to the LSTM.
|
147 |
+
self.embed_tokens = nn.Embedding(
|
148 |
+
num_embeddings=len(dictionary),
|
149 |
+
embedding_dim=embed_dim,
|
150 |
+
padding_idx=dictionary.pad(),
|
151 |
+
)
|
152 |
+
self.dropout = nn.Dropout(p=dropout)
|
153 |
+
|
154 |
+
# We'll use a single-layer, unidirectional LSTM for simplicity.
|
155 |
+
self.lstm = nn.LSTM(
|
156 |
+
# For the first layer we'll concatenate the Encoder's final hidden
|
157 |
+
# state with the embedded target tokens.
|
158 |
+
input_size=encoder_hidden_dim + embed_dim,
|
159 |
+
hidden_size=hidden_dim,
|
160 |
+
num_layers=1,
|
161 |
+
bidirectional=False,
|
162 |
+
)
|
163 |
+
|
164 |
+
# Define the output projection.
|
165 |
+
self.output_projection = nn.Linear(hidden_dim, len(dictionary))
|
166 |
+
|
167 |
+
# During training Decoders are expected to take the entire target sequence
|
168 |
+
# (shifted right by one position) and produce logits over the vocabulary.
|
169 |
+
# The *prev_output_tokens* tensor begins with the end-of-sentence symbol,
|
170 |
+
# ``dictionary.eos()``, followed by the target sequence.
|
171 |
+
def forward(self, prev_output_tokens, encoder_out):
|
172 |
+
"""
|
173 |
+
Args:
|
174 |
+
prev_output_tokens (LongTensor): previous decoder outputs of shape
|
175 |
+
`(batch, tgt_len)`, for teacher forcing
|
176 |
+
encoder_out (Tensor, optional): output from the encoder, used for
|
177 |
+
encoder-side attention
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
tuple:
|
181 |
+
- the last decoder layer's output of shape
|
182 |
+
`(batch, tgt_len, vocab)`
|
183 |
+
- the last decoder layer's attention weights of shape
|
184 |
+
`(batch, tgt_len, src_len)`
|
185 |
+
"""
|
186 |
+
bsz, tgt_len = prev_output_tokens.size()
|
187 |
+
|
188 |
+
# Extract the final hidden state from the Encoder.
|
189 |
+
final_encoder_hidden = encoder_out['final_hidden']
|
190 |
+
|
191 |
+
# Embed the target sequence, which has been shifted right by one
|
192 |
+
# position and now starts with the end-of-sentence symbol.
|
193 |
+
x = self.embed_tokens(prev_output_tokens)
|
194 |
+
|
195 |
+
# Apply dropout.
|
196 |
+
x = self.dropout(x)
|
197 |
+
|
198 |
+
# Concatenate the Encoder's final hidden state to *every* embedded
|
199 |
+
# target token.
|
200 |
+
x = torch.cat(
|
201 |
+
[x, final_encoder_hidden.unsqueeze(1).expand(bsz, tgt_len, -1)],
|
202 |
+
dim=2,
|
203 |
+
)
|
204 |
+
|
205 |
+
# Using PackedSequence objects in the Decoder is harder than in the
|
206 |
+
# Encoder, since the targets are not sorted in descending length order,
|
207 |
+
# which is a requirement of ``pack_padded_sequence()``. Instead we'll
|
208 |
+
# feed nn.LSTM directly.
|
209 |
+
initial_state = (
|
210 |
+
final_encoder_hidden.unsqueeze(0), # hidden
|
211 |
+
torch.zeros_like(final_encoder_hidden).unsqueeze(0), # cell
|
212 |
+
)
|
213 |
+
output, _ = self.lstm(
|
214 |
+
x.transpose(0, 1), # convert to shape `(tgt_len, bsz, dim)`
|
215 |
+
initial_state,
|
216 |
+
)
|
217 |
+
x = output.transpose(0, 1) # convert to shape `(bsz, tgt_len, hidden)`
|
218 |
+
|
219 |
+
# Project the outputs to the size of the vocabulary.
|
220 |
+
x = self.output_projection(x)
|
221 |
+
|
222 |
+
# Return the logits and ``None`` for the attention weights
|
223 |
+
return x, None
|
224 |
+
|
225 |
+
|
226 |
+
2. Registering the Model
|
227 |
+
------------------------
|
228 |
+
|
229 |
+
Now that we've defined our Encoder and Decoder we must *register* our model with
|
230 |
+
fairseq using the :func:`~fairseq.models.register_model` function decorator.
|
231 |
+
Once the model is registered we'll be able to use it with the existing
|
232 |
+
:ref:`Command-line Tools`.
|
233 |
+
|
234 |
+
All registered models must implement the
|
235 |
+
:class:`~fairseq.models.BaseFairseqModel` interface. For sequence-to-sequence
|
236 |
+
models (i.e., any model with a single Encoder and Decoder), we can instead
|
237 |
+
implement the :class:`~fairseq.models.FairseqEncoderDecoderModel` interface.
|
238 |
+
|
239 |
+
Create a small wrapper class in the same file and register it in fairseq with
|
240 |
+
the name ``'simple_lstm'``::
|
241 |
+
|
242 |
+
from fairseq.models import FairseqEncoderDecoderModel, register_model
|
243 |
+
|
244 |
+
# Note: the register_model "decorator" should immediately precede the
|
245 |
+
# definition of the Model class.
|
246 |
+
|
247 |
+
@register_model('simple_lstm')
|
248 |
+
class SimpleLSTMModel(FairseqEncoderDecoderModel):
|
249 |
+
|
250 |
+
@staticmethod
|
251 |
+
def add_args(parser):
|
252 |
+
# Models can override this method to add new command-line arguments.
|
253 |
+
# Here we'll add some new command-line arguments to configure dropout
|
254 |
+
# and the dimensionality of the embeddings and hidden states.
|
255 |
+
parser.add_argument(
|
256 |
+
'--encoder-embed-dim', type=int, metavar='N',
|
257 |
+
help='dimensionality of the encoder embeddings',
|
258 |
+
)
|
259 |
+
parser.add_argument(
|
260 |
+
'--encoder-hidden-dim', type=int, metavar='N',
|
261 |
+
help='dimensionality of the encoder hidden state',
|
262 |
+
)
|
263 |
+
parser.add_argument(
|
264 |
+
'--encoder-dropout', type=float, default=0.1,
|
265 |
+
help='encoder dropout probability',
|
266 |
+
)
|
267 |
+
parser.add_argument(
|
268 |
+
'--decoder-embed-dim', type=int, metavar='N',
|
269 |
+
help='dimensionality of the decoder embeddings',
|
270 |
+
)
|
271 |
+
parser.add_argument(
|
272 |
+
'--decoder-hidden-dim', type=int, metavar='N',
|
273 |
+
help='dimensionality of the decoder hidden state',
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
'--decoder-dropout', type=float, default=0.1,
|
277 |
+
help='decoder dropout probability',
|
278 |
+
)
|
279 |
+
|
280 |
+
@classmethod
|
281 |
+
def build_model(cls, args, task):
|
282 |
+
# Fairseq initializes models by calling the ``build_model()``
|
283 |
+
# function. This provides more flexibility, since the returned model
|
284 |
+
# instance can be of a different type than the one that was called.
|
285 |
+
# In this case we'll just return a SimpleLSTMModel instance.
|
286 |
+
|
287 |
+
# Initialize our Encoder and Decoder.
|
288 |
+
encoder = SimpleLSTMEncoder(
|
289 |
+
args=args,
|
290 |
+
dictionary=task.source_dictionary,
|
291 |
+
embed_dim=args.encoder_embed_dim,
|
292 |
+
hidden_dim=args.encoder_hidden_dim,
|
293 |
+
dropout=args.encoder_dropout,
|
294 |
+
)
|
295 |
+
decoder = SimpleLSTMDecoder(
|
296 |
+
dictionary=task.target_dictionary,
|
297 |
+
encoder_hidden_dim=args.encoder_hidden_dim,
|
298 |
+
embed_dim=args.decoder_embed_dim,
|
299 |
+
hidden_dim=args.decoder_hidden_dim,
|
300 |
+
dropout=args.decoder_dropout,
|
301 |
+
)
|
302 |
+
model = SimpleLSTMModel(encoder, decoder)
|
303 |
+
|
304 |
+
# Print the model architecture.
|
305 |
+
print(model)
|
306 |
+
|
307 |
+
return model
|
308 |
+
|
309 |
+
# We could override the ``forward()`` if we wanted more control over how
|
310 |
+
# the encoder and decoder interact, but it's not necessary for this
|
311 |
+
# tutorial since we can inherit the default implementation provided by
|
312 |
+
# the FairseqEncoderDecoderModel base class, which looks like:
|
313 |
+
#
|
314 |
+
# def forward(self, src_tokens, src_lengths, prev_output_tokens):
|
315 |
+
# encoder_out = self.encoder(src_tokens, src_lengths)
|
316 |
+
# decoder_out = self.decoder(prev_output_tokens, encoder_out)
|
317 |
+
# return decoder_out
|
318 |
+
|
319 |
+
Finally let's define a *named architecture* with the configuration for our
|
320 |
+
model. This is done with the :func:`~fairseq.models.register_model_architecture`
|
321 |
+
function decorator. Thereafter this named architecture can be used with the
|
322 |
+
``--arch`` command-line argument, e.g., ``--arch tutorial_simple_lstm``::
|
323 |
+
|
324 |
+
from fairseq.models import register_model_architecture
|
325 |
+
|
326 |
+
# The first argument to ``register_model_architecture()`` should be the name
|
327 |
+
# of the model we registered above (i.e., 'simple_lstm'). The function we
|
328 |
+
# register here should take a single argument *args* and modify it in-place
|
329 |
+
# to match the desired architecture.
|
330 |
+
|
331 |
+
@register_model_architecture('simple_lstm', 'tutorial_simple_lstm')
|
332 |
+
def tutorial_simple_lstm(args):
|
333 |
+
# We use ``getattr()`` to prioritize arguments that are explicitly given
|
334 |
+
# on the command-line, so that the defaults defined below are only used
|
335 |
+
# when no other value has been specified.
|
336 |
+
args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 256)
|
337 |
+
args.encoder_hidden_dim = getattr(args, 'encoder_hidden_dim', 256)
|
338 |
+
args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 256)
|
339 |
+
args.decoder_hidden_dim = getattr(args, 'decoder_hidden_dim', 256)
|
340 |
+
|
341 |
+
|
342 |
+
3. Training the Model
|
343 |
+
---------------------
|
344 |
+
|
345 |
+
Now we're ready to train the model. We can use the existing :ref:`fairseq-train`
|
346 |
+
command-line tool for this, making sure to specify our new Model architecture
|
347 |
+
(``--arch tutorial_simple_lstm``).
|
348 |
+
|
349 |
+
.. note::
|
350 |
+
|
351 |
+
Make sure you've already preprocessed the data from the IWSLT example in the
|
352 |
+
:file:`examples/translation/` directory.
|
353 |
+
|
354 |
+
.. code-block:: console
|
355 |
+
|
356 |
+
> fairseq-train data-bin/iwslt14.tokenized.de-en \
|
357 |
+
--arch tutorial_simple_lstm \
|
358 |
+
--encoder-dropout 0.2 --decoder-dropout 0.2 \
|
359 |
+
--optimizer adam --lr 0.005 --lr-shrink 0.5 \
|
360 |
+
--max-tokens 12000
|
361 |
+
(...)
|
362 |
+
| epoch 052 | loss 4.027 | ppl 16.30 | wps 420805 | ups 39.7 | wpb 9841 | bsz 400 | num_updates 20852 | lr 1.95313e-05 | gnorm 0.218 | clip 0% | oom 0 | wall 529 | train_wall 396
|
363 |
+
| epoch 052 | valid on 'valid' subset | valid_loss 4.74989 | valid_ppl 26.91 | num_updates 20852 | best 4.74954
|
364 |
+
|
365 |
+
The model files should appear in the :file:`checkpoints/` directory. While this
|
366 |
+
model architecture is not very good, we can use the :ref:`fairseq-generate` script to
|
367 |
+
generate translations and compute our BLEU score over the test set:
|
368 |
+
|
369 |
+
.. code-block:: console
|
370 |
+
|
371 |
+
> fairseq-generate data-bin/iwslt14.tokenized.de-en \
|
372 |
+
--path checkpoints/checkpoint_best.pt \
|
373 |
+
--beam 5 \
|
374 |
+
--remove-bpe
|
375 |
+
(...)
|
376 |
+
| Translated 6750 sentences (153132 tokens) in 17.3s (389.12 sentences/s, 8827.68 tokens/s)
|
377 |
+
| Generate test with beam=5: BLEU4 = 8.18, 38.8/12.1/4.7/2.0 (BP=1.000, ratio=1.066, syslen=139865, reflen=131146)
|
378 |
+
|
379 |
+
|
380 |
+
4. Making generation faster
|
381 |
+
---------------------------
|
382 |
+
|
383 |
+
While autoregressive generation from sequence-to-sequence models is inherently
|
384 |
+
slow, our implementation above is especially slow because it recomputes the
|
385 |
+
entire sequence of Decoder hidden states for every output token (i.e., it is
|
386 |
+
``O(n^2)``). We can make this significantly faster by instead caching the
|
387 |
+
previous hidden states.
|
388 |
+
|
389 |
+
In fairseq this is called :ref:`Incremental decoding`. Incremental decoding is a
|
390 |
+
special mode at inference time where the Model only receives a single timestep
|
391 |
+
of input corresponding to the immediately previous output token (for teacher
|
392 |
+
forcing) and must produce the next output incrementally. Thus the model must
|
393 |
+
cache any long-term state that is needed about the sequence, e.g., hidden
|
394 |
+
states, convolutional states, etc.
|
395 |
+
|
396 |
+
To implement incremental decoding we will modify our model to implement the
|
397 |
+
:class:`~fairseq.models.FairseqIncrementalDecoder` interface. Compared to the
|
398 |
+
standard :class:`~fairseq.models.FairseqDecoder` interface, the incremental
|
399 |
+
decoder interface allows ``forward()`` methods to take an extra keyword argument
|
400 |
+
(*incremental_state*) that can be used to cache state across time-steps.
|
401 |
+
|
402 |
+
Let's replace our ``SimpleLSTMDecoder`` with an incremental one::
|
403 |
+
|
404 |
+
import torch
|
405 |
+
from fairseq.models import FairseqIncrementalDecoder
|
406 |
+
|
407 |
+
class SimpleLSTMDecoder(FairseqIncrementalDecoder):
|
408 |
+
|
409 |
+
def __init__(
|
410 |
+
self, dictionary, encoder_hidden_dim=128, embed_dim=128, hidden_dim=128,
|
411 |
+
dropout=0.1,
|
412 |
+
):
|
413 |
+
# This remains the same as before.
|
414 |
+
super().__init__(dictionary)
|
415 |
+
self.embed_tokens = nn.Embedding(
|
416 |
+
num_embeddings=len(dictionary),
|
417 |
+
embedding_dim=embed_dim,
|
418 |
+
padding_idx=dictionary.pad(),
|
419 |
+
)
|
420 |
+
self.dropout = nn.Dropout(p=dropout)
|
421 |
+
self.lstm = nn.LSTM(
|
422 |
+
input_size=encoder_hidden_dim + embed_dim,
|
423 |
+
hidden_size=hidden_dim,
|
424 |
+
num_layers=1,
|
425 |
+
bidirectional=False,
|
426 |
+
)
|
427 |
+
self.output_projection = nn.Linear(hidden_dim, len(dictionary))
|
428 |
+
|
429 |
+
# We now take an additional kwarg (*incremental_state*) for caching the
|
430 |
+
# previous hidden and cell states.
|
431 |
+
def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
|
432 |
+
if incremental_state is not None:
|
433 |
+
# If the *incremental_state* argument is not ``None`` then we are
|
434 |
+
# in incremental inference mode. While *prev_output_tokens* will
|
435 |
+
# still contain the entire decoded prefix, we will only use the
|
436 |
+
# last step and assume that the rest of the state is cached.
|
437 |
+
prev_output_tokens = prev_output_tokens[:, -1:]
|
438 |
+
|
439 |
+
# This remains the same as before.
|
440 |
+
bsz, tgt_len = prev_output_tokens.size()
|
441 |
+
final_encoder_hidden = encoder_out['final_hidden']
|
442 |
+
x = self.embed_tokens(prev_output_tokens)
|
443 |
+
x = self.dropout(x)
|
444 |
+
x = torch.cat(
|
445 |
+
[x, final_encoder_hidden.unsqueeze(1).expand(bsz, tgt_len, -1)],
|
446 |
+
dim=2,
|
447 |
+
)
|
448 |
+
|
449 |
+
# We will now check the cache and load the cached previous hidden and
|
450 |
+
# cell states, if they exist, otherwise we will initialize them to
|
451 |
+
# zeros (as before). We will use the ``utils.get_incremental_state()``
|
452 |
+
# and ``utils.set_incremental_state()`` helpers.
|
453 |
+
initial_state = utils.get_incremental_state(
|
454 |
+
self, incremental_state, 'prev_state',
|
455 |
+
)
|
456 |
+
if initial_state is None:
|
457 |
+
# first time initialization, same as the original version
|
458 |
+
initial_state = (
|
459 |
+
final_encoder_hidden.unsqueeze(0), # hidden
|
460 |
+
torch.zeros_like(final_encoder_hidden).unsqueeze(0), # cell
|
461 |
+
)
|
462 |
+
|
463 |
+
# Run one step of our LSTM.
|
464 |
+
output, latest_state = self.lstm(x.transpose(0, 1), initial_state)
|
465 |
+
|
466 |
+
# Update the cache with the latest hidden and cell states.
|
467 |
+
utils.set_incremental_state(
|
468 |
+
self, incremental_state, 'prev_state', latest_state,
|
469 |
+
)
|
470 |
+
|
471 |
+
# This remains the same as before
|
472 |
+
x = output.transpose(0, 1)
|
473 |
+
x = self.output_projection(x)
|
474 |
+
return x, None
|
475 |
+
|
476 |
+
# The ``FairseqIncrementalDecoder`` interface also requires implementing a
|
477 |
+
# ``reorder_incremental_state()`` method, which is used during beam search
|
478 |
+
# to select and reorder the incremental state.
|
479 |
+
def reorder_incremental_state(self, incremental_state, new_order):
|
480 |
+
# Load the cached state.
|
481 |
+
prev_state = utils.get_incremental_state(
|
482 |
+
self, incremental_state, 'prev_state',
|
483 |
+
)
|
484 |
+
|
485 |
+
# Reorder batches according to *new_order*.
|
486 |
+
reordered_state = (
|
487 |
+
prev_state[0].index_select(1, new_order), # hidden
|
488 |
+
prev_state[1].index_select(1, new_order), # cell
|
489 |
+
)
|
490 |
+
|
491 |
+
# Update the cached state.
|
492 |
+
utils.set_incremental_state(
|
493 |
+
self, incremental_state, 'prev_state', reordered_state,
|
494 |
+
)
|
495 |
+
|
496 |
+
Finally, we can rerun generation and observe the speedup:
|
497 |
+
|
498 |
+
.. code-block:: console
|
499 |
+
|
500 |
+
# Before
|
501 |
+
|
502 |
+
> fairseq-generate data-bin/iwslt14.tokenized.de-en \
|
503 |
+
--path checkpoints/checkpoint_best.pt \
|
504 |
+
--beam 5 \
|
505 |
+
--remove-bpe
|
506 |
+
(...)
|
507 |
+
| Translated 6750 sentences (153132 tokens) in 17.3s (389.12 sentences/s, 8827.68 tokens/s)
|
508 |
+
| Generate test with beam=5: BLEU4 = 8.18, 38.8/12.1/4.7/2.0 (BP=1.000, ratio=1.066, syslen=139865, reflen=131146)
|
509 |
+
|
510 |
+
# After
|
511 |
+
|
512 |
+
> fairseq-generate data-bin/iwslt14.tokenized.de-en \
|
513 |
+
--path checkpoints/checkpoint_best.pt \
|
514 |
+
--beam 5 \
|
515 |
+
--remove-bpe
|
516 |
+
(...)
|
517 |
+
| Translated 6750 sentences (153132 tokens) in 5.5s (1225.54 sentences/s, 27802.94 tokens/s)
|
518 |
+
| Generate test with beam=5: BLEU4 = 8.18, 38.8/12.1/4.7/2.0 (BP=1.000, ratio=1.066, syslen=139865, reflen=131146)
|
examples/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
!*/*.sh
|
2 |
+
!*/*.md
|
examples/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
try:
|
7 |
+
from fairseq.version import __version__ # noqa
|
8 |
+
except ImportError:
|
9 |
+
pass
|
examples/adaptive_span/README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adaptive Span
|
2 |
+
|
3 |
+
Adaptive Span is a novel self-attention mechanism that can learn its optimal
|
4 |
+
attention span. This allows us to extend significantly the maximum context size
|
5 |
+
used in Transformer, while maintaining control over their memory footprint
|
6 |
+
and computational time. It uses the Truncated BPTT technique for training,
|
7 |
+
as in [transformerXL](https://github.com/pytorch/fairseq/blob/master/examples/truncated_bptt/README.md).
|
8 |
+
|
9 |
+
Adaptive Span was introduced by paper:
|
10 |
+
[Adaptive Attention Span in Transformers](https://arxiv.org/abs/1905.07799),
|
11 |
+
which achieved state-of-the-art language modeling results at the time of publication.
|
12 |
+
|
13 |
+
We manage to reproduce their result in fairseq and keep most of the
|
14 |
+
[original implementation](https://github.com/facebookresearch/adaptive-span) untouched.
|
15 |
+
You can refer to the their sweep file as well if any combination of hyperparameter is not clear.
|
16 |
+
|
17 |
+
##### 0. Setup
|
18 |
+
|
19 |
+
First you need to process the Enwik8 dataset, we use the pre-tokenized dataset
|
20 |
+
from [adaptive span paper](https://github.com/facebookresearch/adaptive-span/blob/master/get_data.sh).
|
21 |
+
You can download the dataset, and then run:
|
22 |
+
```bash
|
23 |
+
fairseq-preprocess --only-source --trainpref ~/data/enwik8/train.txt \
|
24 |
+
--validpref ~/data/enwik8/valid.txt --testpref ~/data/enwik8/test.txt \
|
25 |
+
--destdir ~/data/enwik8/data-bin/ --joined-dictionary --workers 20
|
26 |
+
```
|
27 |
+
|
28 |
+
##### 1. Train a Adaptive Span model on Enwik8
|
29 |
+
|
30 |
+
We will train a 12-layer Adaptive Span model following the [hyperparameters
|
31 |
+
used in the original
|
32 |
+
paper](https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8.sh).
|
33 |
+
|
34 |
+
The following command assumes 4 GPUs, so that the total batch size is 64
|
35 |
+
sequences (4 x 16). Training should take 2-3 days on 4 V100 GPUs:
|
36 |
+
```bash
|
37 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train \
|
38 |
+
--user-dir examples/adaptive_span \
|
39 |
+
--data ~/data/enwik8/data-bin/ \
|
40 |
+
--fp16 --fp16-no-flatten-grads --max-update 600000 \
|
41 |
+
--task truncated_bptt_lm --tokens-per-sample 512 --arch adaptive_span \
|
42 |
+
--n-layer 12 --d-model 512 --n-head 8 --d-inner 2048 --dropout 0.3 \
|
43 |
+
--attn-span 8192 --optimizer adagrad_with_grad_clip --adagrad-clip 0.03 \
|
44 |
+
--validate-interval-updates 1000 \
|
45 |
+
--lr-scheduler fixed --warmup-updates 32000 --batch-size-valid 32 \
|
46 |
+
--lr 0.07 --criterion adaptive_span_loss --batch-size 16 --update-freq 1 \
|
47 |
+
--seed 2 --log-format json --log-interval 25 --aux-loss-scaler 5e-07
|
48 |
+
```
|
49 |
+
This should land around 1.05 on validation, 1.03 on test. You can lower the
|
50 |
+
--aux-loss-scaler for better performance (longer span). It gives ~0.03 bpc
|
51 |
+
improvement to the transformerXL baseline here.
|
52 |
+
If training on a single GPU, set `--update-freq=4` to accumulate 4x gradients
|
53 |
+
and simulate training on 4 GPUs.
|
54 |
+
You can also reproduce the transformerXL result on enwik8 using this code base.
|
55 |
+
It should land around 1.06 on test,matching the [original paper](https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/run_enwik8_base.sh).
|
56 |
+
You can try by
|
57 |
+
```bash
|
58 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train \
|
59 |
+
--user-dir examples/truncated_bptt \
|
60 |
+
~/data/enwik8/data-bin/ \
|
61 |
+
--task truncated_bptt_lm --fp16 --max-update 400000 \
|
62 |
+
--tokens-per-sample 512 --arch transformer_xl --n-layer 12 \
|
63 |
+
--d-model 512 --n-head 8 --d-head 64 --d-inner 2048 --dropout 0.1 \
|
64 |
+
--dropatt 0.0 --mem-len 512 --optimizer adam --clip-norm 0.25 \
|
65 |
+
--lr-scheduler cosine --warmup-updates 0 \
|
66 |
+
--lr 0.0 --lr 0.00025 --batch-size 15 \
|
67 |
+
--update-freq 1 --seed 2 --log-format json --log-interval 25 \
|
68 |
+
--fp16
|
69 |
+
```
|
70 |
+
|
71 |
+
##### 2. Evaluate
|
72 |
+
For Adaptive Span:
|
73 |
+
```bash
|
74 |
+
fairseq-eval-lm ~/data/enwik8/data-bin/ --path model/checkpoint_best.pt \
|
75 |
+
--user-dir examples/adaptive_span \
|
76 |
+
--task truncated_bptt_lm --batch-size 8 --tokens-per-sample 512 --gen-subset test
|
77 |
+
```
|
78 |
+
For Transformer-XL evaluation:
|
79 |
+
```bash
|
80 |
+
fairseq-eval-lm ~/data/enwik8/data-bin/ --path model/checkpoint_best.pt \
|
81 |
+
--user-dir examples/truncated_bptt/ --task truncated_bptt_lm --batch-size 8 \
|
82 |
+
--tokens-per-sample 80 \
|
83 |
+
--model-overrides '{"mem_len":2100,"clamp_len":820,"same_length":True}' \
|
84 |
+
--gen-subset valid
|
85 |
+
```
|
86 |
+
|
87 |
+
*Note:* During training the model saw 512 tokens of context
|
88 |
+
(``--tokens-per-sample=512``), with batch size 8. These settings match the evaluation
|
89 |
+
settings from [the original
|
90 |
+
paper](https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8.sh).
|
examples/adaptive_span/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import importlib
|
7 |
+
import os
|
8 |
+
|
9 |
+
# automatically import any Python files in the current directory
|
10 |
+
cur_dir = os.path.dirname(__file__)
|
11 |
+
for file in os.listdir(cur_dir):
|
12 |
+
path = os.path.join(cur_dir, file)
|
13 |
+
if (
|
14 |
+
not file.startswith("_")
|
15 |
+
and not file.startswith(".")
|
16 |
+
and (file.endswith(".py") or os.path.isdir(path))
|
17 |
+
):
|
18 |
+
mod_name = file[: file.find(".py")] if file.endswith(".py") else file
|
19 |
+
module = importlib.import_module(__name__ + "." + mod_name)
|
examples/adaptive_span/adagrad_with_grad_clip.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from torch.optim import Adagrad
|
7 |
+
|
8 |
+
from fairseq.optim import LegacyFairseqOptimizer, register_optimizer
|
9 |
+
|
10 |
+
|
11 |
+
@register_optimizer("adagrad_with_grad_clip")
|
12 |
+
class FairseqAdagradWithGradClip(LegacyFairseqOptimizer):
|
13 |
+
def __init__(self, args, params):
|
14 |
+
super().__init__(args)
|
15 |
+
self._optimizer = AdagradWithGradClip(params, **self.optimizer_config)
|
16 |
+
|
17 |
+
@staticmethod
|
18 |
+
def add_args(parser):
|
19 |
+
"""Add optimizer-specific arguments to the parser."""
|
20 |
+
# fmt: off
|
21 |
+
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
|
22 |
+
help='weight decay')
|
23 |
+
parser.add_argument('--adagrad-clip', default=0.0, type=float, metavar='D',
|
24 |
+
help='internal grad clip')
|
25 |
+
# fmt: on
|
26 |
+
|
27 |
+
@property
|
28 |
+
def optimizer_config(self):
|
29 |
+
"""
|
30 |
+
Return a kwarg dictionary that will be used to override optimizer
|
31 |
+
args stored in checkpoints. This allows us to load a checkpoint and
|
32 |
+
resume training using a different set of optimizer args, e.g., with a
|
33 |
+
different learning rate.
|
34 |
+
"""
|
35 |
+
return {
|
36 |
+
"lr": self.args.lr[0],
|
37 |
+
"weight_decay": self.args.weight_decay,
|
38 |
+
"grad_clip": self.args.adagrad_clip,
|
39 |
+
}
|
40 |
+
|
41 |
+
@property
|
42 |
+
def supports_flat_params(self):
|
43 |
+
return False
|
44 |
+
|
45 |
+
|
46 |
+
def _clip_grad(clr, grad, group_grad_clip):
|
47 |
+
if group_grad_clip > 0:
|
48 |
+
norm = grad.norm(2).item()
|
49 |
+
if norm > group_grad_clip:
|
50 |
+
clr *= group_grad_clip / (norm + 1e-10)
|
51 |
+
return clr
|
52 |
+
|
53 |
+
|
54 |
+
class AdagradWithGradClip(Adagrad):
|
55 |
+
"""Adagrad algorithm with custom gradient clipping"""
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
params,
|
60 |
+
lr=1e-2,
|
61 |
+
lr_decay=0,
|
62 |
+
weight_decay=0,
|
63 |
+
initial_accumulator_value=0,
|
64 |
+
grad_clip=0,
|
65 |
+
):
|
66 |
+
Adagrad.__init__(
|
67 |
+
self,
|
68 |
+
params,
|
69 |
+
lr=lr,
|
70 |
+
lr_decay=lr_decay,
|
71 |
+
weight_decay=weight_decay,
|
72 |
+
initial_accumulator_value=initial_accumulator_value,
|
73 |
+
)
|
74 |
+
self.defaults["grad_clip"] = grad_clip
|
75 |
+
self.param_groups[0].setdefault("grad_clip", grad_clip)
|
76 |
+
|
77 |
+
def step(self, closure=None):
|
78 |
+
loss = None
|
79 |
+
if closure is not None:
|
80 |
+
loss = closure()
|
81 |
+
|
82 |
+
for group in self.param_groups:
|
83 |
+
for p in group["params"]:
|
84 |
+
if p.grad is None:
|
85 |
+
continue
|
86 |
+
|
87 |
+
grad = p.grad.data
|
88 |
+
state = self.state[p]
|
89 |
+
|
90 |
+
state["step"] += 1
|
91 |
+
|
92 |
+
if group["weight_decay"] != 0:
|
93 |
+
if p.grad.data.is_sparse:
|
94 |
+
raise RuntimeError(
|
95 |
+
"weight_decay option is "
|
96 |
+
"not compatible with sparse "
|
97 |
+
"gradients"
|
98 |
+
)
|
99 |
+
grad = grad.add(group["weight_decay"], p.data)
|
100 |
+
|
101 |
+
clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"])
|
102 |
+
|
103 |
+
# clip
|
104 |
+
clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group["grad_clip"])
|
105 |
+
|
106 |
+
if grad.is_sparse:
|
107 |
+
# the update is non-linear so indices must be unique
|
108 |
+
grad = grad.coalesce()
|
109 |
+
grad_indices = grad._indices()
|
110 |
+
grad_values = grad._values()
|
111 |
+
size = grad.size()
|
112 |
+
|
113 |
+
def make_sparse(values):
|
114 |
+
constructor = grad.new
|
115 |
+
if grad_indices.dim() == 0 or values.dim() == 0:
|
116 |
+
return constructor().resize_as_(grad)
|
117 |
+
return constructor(grad_indices, values, size)
|
118 |
+
|
119 |
+
state["sum"].add_(make_sparse(grad_values.pow(2)))
|
120 |
+
std = state["sum"]._sparse_mask(grad)
|
121 |
+
std_values = std._values().sqrt_().add_(1e-10)
|
122 |
+
p.data.add_(-clr, make_sparse(grad_values / std_values))
|
123 |
+
else:
|
124 |
+
state["sum"].addcmul_(1, grad, grad)
|
125 |
+
std = state["sum"].sqrt().add_(1e-10)
|
126 |
+
p.data.addcdiv_(-clr, grad, std)
|
127 |
+
|
128 |
+
return loss
|
examples/adaptive_span/adaptive_span_attention.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class AdaptiveMask(nn.Module):
|
13 |
+
"""Soft masking function for adaptive size.
|
14 |
+
It masks out the last K values of an input. The masking value
|
15 |
+
goes from 1 to 0 gradually, so K can be learned with
|
16 |
+
back-propagation.
|
17 |
+
Args:
|
18 |
+
max_size: maximum size (i.e. input dimension)
|
19 |
+
ramp_size: size of the ramp going from 0 to 1
|
20 |
+
init_val: initial size proportion not to be masked out
|
21 |
+
shape: learn multiple sizes independent of each other
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, max_size, ramp_size, init_val=0, shape=(1,)):
|
25 |
+
nn.Module.__init__(self)
|
26 |
+
self._max_size = max_size
|
27 |
+
self._ramp_size = ramp_size
|
28 |
+
self.current_val = nn.Parameter(torch.zeros(*shape) + init_val)
|
29 |
+
mask_template = torch.linspace(1 - max_size, 0, steps=max_size)
|
30 |
+
self.register_buffer("mask_template", mask_template)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
mask = self.mask_template.float() + self.current_val.float() * self._max_size
|
34 |
+
mask = mask / self._ramp_size + 1
|
35 |
+
mask = mask.clamp(0, 1)
|
36 |
+
if x.size(-1) < self._max_size:
|
37 |
+
# the input could have been trimmed beforehand to save computation
|
38 |
+
mask = mask.narrow(-1, self._max_size - x.size(-1), x.size(-1))
|
39 |
+
x = (x * mask).type_as(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
def get_current_max_size(self, include_ramp=True):
|
43 |
+
current_size = math.ceil(self.current_val.max().item() * self._max_size)
|
44 |
+
if include_ramp:
|
45 |
+
current_size += self._ramp_size
|
46 |
+
current_size = max(0, min(self._max_size, current_size))
|
47 |
+
return current_size
|
48 |
+
|
49 |
+
def get_current_avg_size(self, include_ramp=True):
|
50 |
+
current_size = math.ceil(
|
51 |
+
self.current_val.float().mean().item() * self._max_size
|
52 |
+
)
|
53 |
+
if include_ramp:
|
54 |
+
current_size += self._ramp_size
|
55 |
+
current_size = max(0, min(self._max_size, current_size))
|
56 |
+
return current_size
|
57 |
+
|
58 |
+
def clamp_param(self):
|
59 |
+
"""this need to be called after each update"""
|
60 |
+
self.current_val.data.clamp_(0, 1)
|
61 |
+
|
62 |
+
|
63 |
+
class AdaptiveSpan(nn.Module):
|
64 |
+
"""Adaptive attention span for Transformerself.
|
65 |
+
This module learns an attention span length from data for each
|
66 |
+
self-attention head.
|
67 |
+
Args:
|
68 |
+
attn_span: maximum attention span
|
69 |
+
adapt_span_loss: loss coefficient for the span length
|
70 |
+
adapt_span_ramp: length of the masking ramp
|
71 |
+
adapt_span_init: initial size ratio
|
72 |
+
adapt_span_cache: adapt cache size to reduce memory usage
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
attn_span,
|
78 |
+
adapt_span_ramp,
|
79 |
+
adapt_span_init,
|
80 |
+
n_head,
|
81 |
+
adapt_span_layer,
|
82 |
+
**kargs
|
83 |
+
):
|
84 |
+
nn.Module.__init__(self)
|
85 |
+
self._max_span = attn_span
|
86 |
+
self._n_head = n_head
|
87 |
+
self._adapt_span_layer = adapt_span_layer
|
88 |
+
if self._adapt_span_layer:
|
89 |
+
self._mask = AdaptiveMask(
|
90 |
+
max_size=self._max_span,
|
91 |
+
ramp_size=adapt_span_ramp,
|
92 |
+
init_val=adapt_span_init,
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
self._mask = AdaptiveMask(
|
96 |
+
max_size=self._max_span,
|
97 |
+
ramp_size=adapt_span_ramp,
|
98 |
+
init_val=adapt_span_init,
|
99 |
+
shape=(n_head, 1, 1),
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(self, attn, normalize=True):
|
103 |
+
"""mask attention with the right span"""
|
104 |
+
# batch and head dimensions are merged together, so separate them first
|
105 |
+
self.clamp_param()
|
106 |
+
if self._adapt_span_layer:
|
107 |
+
attn = self._mask(attn)
|
108 |
+
else:
|
109 |
+
B = attn.size(0) # batch size
|
110 |
+
M = attn.size(1) # block size
|
111 |
+
attn = attn.reshape(B // self._n_head, self._n_head, M, -1)
|
112 |
+
attn = self._mask(attn)
|
113 |
+
attn = attn.view(B, M, -1)
|
114 |
+
return attn
|
115 |
+
|
116 |
+
def get_trim_len(self):
|
117 |
+
"""how much of memory can be trimmed to reduce computation"""
|
118 |
+
L = self._max_span
|
119 |
+
trim_len = min(L - 1, L - self._mask.get_current_max_size())
|
120 |
+
# too fine granularity might be bad for the memory management
|
121 |
+
trim_len = math.floor(trim_len / 64) * 64
|
122 |
+
return trim_len
|
123 |
+
|
124 |
+
def trim_memory(self, query, key, value, key_pe):
|
125 |
+
"""trim out unnecessary memory beforehand to reduce computation"""
|
126 |
+
trim_len = self.get_trim_len()
|
127 |
+
cache_size = key.size(1) - query.size(1)
|
128 |
+
trim_len_cache = trim_len - (self._max_span - cache_size)
|
129 |
+
if trim_len_cache > 0:
|
130 |
+
key = key[:, trim_len_cache:, :]
|
131 |
+
value = value[:, trim_len_cache:, :]
|
132 |
+
elif trim_len_cache < 0:
|
133 |
+
# cache is too short! this happens when validation resumes
|
134 |
+
# after a lot of updates.
|
135 |
+
key = F.pad(key, [0, 0, -trim_len_cache, 0])
|
136 |
+
value = F.pad(value, [0, 0, -trim_len_cache, 0])
|
137 |
+
if trim_len > 0:
|
138 |
+
if key_pe is not None:
|
139 |
+
key_pe = key_pe[:, :, trim_len:]
|
140 |
+
return key, value, key_pe
|
141 |
+
|
142 |
+
def get_cache_size(self):
|
143 |
+
"""determine how long the cache should be"""
|
144 |
+
trim_len = self.get_trim_len()
|
145 |
+
# give a buffer of 64 steps since a span might increase
|
146 |
+
# in future updates
|
147 |
+
return min(self._max_span, self._max_span - trim_len + 64)
|
148 |
+
|
149 |
+
def get_loss(self):
|
150 |
+
"""a loss term for regularizing the span length"""
|
151 |
+
return self._max_span * self._mask.current_val.float().mean()
|
152 |
+
|
153 |
+
def get_current_max_span(self):
|
154 |
+
return self._mask.get_current_max_size()
|
155 |
+
|
156 |
+
def get_current_avg_span(self):
|
157 |
+
return self._mask.get_current_avg_size()
|
158 |
+
|
159 |
+
def clamp_param(self):
|
160 |
+
self._mask.clamp_param()
|
examples/adaptive_span/adaptive_span_loss.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import math
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from fairseq import metrics, utils
|
11 |
+
from fairseq.criterions import register_criterion
|
12 |
+
from fairseq.criterions.cross_entropy import CrossEntropyCriterion
|
13 |
+
from fairseq.dataclass import FairseqDataclass
|
14 |
+
from omegaconf import II
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class AdaptiveSpanCriterionConfig(FairseqDataclass):
|
19 |
+
sentence_avg: bool = II("optimization.sentence_avg")
|
20 |
+
|
21 |
+
|
22 |
+
@register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig)
|
23 |
+
class AdaptiveSpanCriterion(CrossEntropyCriterion):
|
24 |
+
def __init__(self, task, sentence_avg):
|
25 |
+
super().__init__(task, sentence_avg)
|
26 |
+
|
27 |
+
def forward(self, model, sample, reduce=True):
|
28 |
+
"""Compute the loss for the given sample.
|
29 |
+
|
30 |
+
Returns a tuple with three elements:
|
31 |
+
1) the loss here is summed, different from the adaptive span code
|
32 |
+
2) the sample size, which is used as the denominator for the gradient
|
33 |
+
3) logging outputs to display while training
|
34 |
+
"""
|
35 |
+
net_output = model(**sample["net_input"])
|
36 |
+
loss, aux_loss, avg_span, max_span = self.compute_loss(
|
37 |
+
model, net_output, sample, reduce=reduce
|
38 |
+
)
|
39 |
+
sample_size = (
|
40 |
+
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
|
41 |
+
)
|
42 |
+
loss /= sample_size
|
43 |
+
total_loss = loss + aux_loss
|
44 |
+
sample_size = 1
|
45 |
+
|
46 |
+
logging_output = {
|
47 |
+
"loss": loss.data,
|
48 |
+
"ntokens": sample["ntokens"],
|
49 |
+
"nsentences": sample["target"].size(0),
|
50 |
+
"sample_size": sample_size,
|
51 |
+
"total_loss": total_loss.data,
|
52 |
+
"avg_span": avg_span * sample_size,
|
53 |
+
"max_span": max_span * sample_size,
|
54 |
+
}
|
55 |
+
return total_loss, sample_size, logging_output
|
56 |
+
|
57 |
+
def compute_loss(self, model, net_output, sample, reduce=True):
|
58 |
+
loss, _ = super().compute_loss(model, net_output, sample, reduce)
|
59 |
+
aux_loss = model.get_aux_loss()
|
60 |
+
avg_span = model.get_current_avg_span()
|
61 |
+
max_span = model.get_current_max_span()
|
62 |
+
return loss, aux_loss, avg_span, max_span
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def reduce_metrics(logging_outputs) -> None:
|
66 |
+
"""Aggregate logging outputs from data parallel training."""
|
67 |
+
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
|
68 |
+
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
|
69 |
+
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
|
70 |
+
total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs)
|
71 |
+
avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs)
|
72 |
+
max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs)
|
73 |
+
|
74 |
+
# we divide by log(2) to convert the loss from base e to base 2
|
75 |
+
metrics.log_scalar(
|
76 |
+
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
|
77 |
+
)
|
78 |
+
metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3)
|
79 |
+
metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3)
|
80 |
+
# total loss contains the L1 norm on adaptive-span
|
81 |
+
metrics.log_scalar(
|
82 |
+
"total_loss",
|
83 |
+
total_loss_sum / sample_size / math.log(2),
|
84 |
+
sample_size,
|
85 |
+
round=3,
|
86 |
+
)
|
87 |
+
if sample_size != ntokens:
|
88 |
+
metrics.log_scalar(
|
89 |
+
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
|
90 |
+
)
|
91 |
+
metrics.log_derived(
|
92 |
+
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
metrics.log_derived(
|
96 |
+
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
|
97 |
+
)
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def logging_outputs_can_be_summed() -> bool:
|
101 |
+
"""
|
102 |
+
Whether the logging outputs returned by `forward` can be summed
|
103 |
+
across workers prior to calling `reduce_metrics`. Setting this
|
104 |
+
to True will improves distributed training speed.
|
105 |
+
"""
|
106 |
+
return True
|
examples/adaptive_span/adaptive_span_model.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from fairseq.modules.layer_norm import LayerNorm
|
14 |
+
|
15 |
+
from .adaptive_span_attention import AdaptiveSpan
|
16 |
+
|
17 |
+
# Size notations:
|
18 |
+
# B = batch_size, H = d_model, M = block_size, L = attn_span
|
19 |
+
|
20 |
+
|
21 |
+
def _skew(X, pad_value):
|
22 |
+
"""shift every row 1 step to right"""
|
23 |
+
# X = B x M x L
|
24 |
+
B, M, L = X.size()
|
25 |
+
X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1)
|
26 |
+
X = X.view(B, -1) # B x ML+MM+M
|
27 |
+
X = X[:, :-M] # B x ML+MM
|
28 |
+
X = X.view(B, M, M + L) # B x M x L+M
|
29 |
+
return X
|
30 |
+
|
31 |
+
|
32 |
+
def _unskew(X):
|
33 |
+
"""reverse _skew operation"""
|
34 |
+
# X = B x M x L+M
|
35 |
+
B, M, L = X.size()
|
36 |
+
L -= M
|
37 |
+
X = X.view(B, -1) # B x ML+MM
|
38 |
+
X = F.pad(X, (0, M)) # B x ML+MM+M
|
39 |
+
X = X.view(B, M, M + L + 1) # B x M x L+M+1
|
40 |
+
X = X[:, :, :L] # B x M x L
|
41 |
+
return X
|
42 |
+
|
43 |
+
|
44 |
+
class SeqAttention(nn.Module):
|
45 |
+
"""Sequential self-attention layer.
|
46 |
+
Each token will attend to its previous fixed number of steps.
|
47 |
+
Note that attention doesn't include the current step itself.
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs):
|
51 |
+
nn.Module.__init__(self)
|
52 |
+
self.dropout = nn.Dropout(dropout)
|
53 |
+
self.d_model = d_model # size of a single head
|
54 |
+
self.attn_span = attn_span
|
55 |
+
self.adaptive_span = AdaptiveSpan(
|
56 |
+
attn_span=attn_span,
|
57 |
+
n_head=n_head,
|
58 |
+
adapt_span_layer=adapt_span_layer,
|
59 |
+
**kargs
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, query, key, value, key_pe):
|
63 |
+
# query size = B x M x H
|
64 |
+
# key, value sizes = B x (M+L) x H
|
65 |
+
|
66 |
+
key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe)
|
67 |
+
|
68 |
+
# compute attention from context
|
69 |
+
# B x M (dest) x (M+L) (src)
|
70 |
+
attn_cont = torch.matmul(query, key.transpose(-1, -2))
|
71 |
+
attn_cont = _unskew(attn_cont) # B x M x L
|
72 |
+
|
73 |
+
# compute the effect of position embedding
|
74 |
+
attn_pos = torch.matmul(query, key_pe) # B x M x L_pos
|
75 |
+
attn = attn_cont + attn_pos
|
76 |
+
|
77 |
+
attn = attn / math.sqrt(self.d_model) # B x M X L_pos
|
78 |
+
|
79 |
+
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
80 |
+
|
81 |
+
# trim attention lengths according to the learned span
|
82 |
+
attn = self.adaptive_span(attn)
|
83 |
+
|
84 |
+
attn = self.dropout(attn) # B x M X L_pos
|
85 |
+
|
86 |
+
attn_cont = _skew(attn, 0) # B x M X (L+M)
|
87 |
+
out = torch.matmul(attn_cont, value) # B x M x H
|
88 |
+
return out
|
89 |
+
|
90 |
+
def get_cache_size(self):
|
91 |
+
return self.adaptive_span.get_cache_size()
|
92 |
+
|
93 |
+
|
94 |
+
class MultiHeadSeqAttention(nn.Module):
|
95 |
+
def __init__(self, d_model, n_head, **kargs):
|
96 |
+
nn.Module.__init__(self)
|
97 |
+
assert d_model % n_head == 0
|
98 |
+
self.n_head = n_head
|
99 |
+
self.head_dim = d_model // n_head
|
100 |
+
self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs)
|
101 |
+
self.proj_query = nn.Linear(d_model, d_model, bias=False)
|
102 |
+
nn.init.xavier_normal_(self.proj_query.weight)
|
103 |
+
self.proj_out = nn.Linear(d_model, d_model, bias=False)
|
104 |
+
nn.init.xavier_normal_(self.proj_out.weight)
|
105 |
+
self.proj_val = nn.Linear(d_model, d_model, bias=False)
|
106 |
+
nn.init.xavier_normal_(self.proj_val.weight)
|
107 |
+
self.proj_key = nn.Linear(d_model, d_model, bias=False)
|
108 |
+
nn.init.xavier_normal_(self.proj_key.weight)
|
109 |
+
|
110 |
+
def head_reshape(self, x):
|
111 |
+
K = self.n_head
|
112 |
+
D = self.head_dim
|
113 |
+
x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D
|
114 |
+
x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D
|
115 |
+
x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D
|
116 |
+
return x
|
117 |
+
|
118 |
+
def forward(self, query, key, value, key_pe):
|
119 |
+
B = query.size(0)
|
120 |
+
K = self.n_head
|
121 |
+
D = self.head_dim
|
122 |
+
M = query.size(1)
|
123 |
+
|
124 |
+
query = self.proj_query(query)
|
125 |
+
query = self.head_reshape(query)
|
126 |
+
value = self.proj_val(value)
|
127 |
+
value = self.head_reshape(value)
|
128 |
+
key = self.proj_key(key)
|
129 |
+
key = self.head_reshape(key)
|
130 |
+
|
131 |
+
out = self.attn(query, key, value, key_pe) # B_K x M x D
|
132 |
+
out = out.view(B, K, M, D) # B x K x M x D
|
133 |
+
out = out.transpose(1, 2).contiguous() # B x M x K x D
|
134 |
+
out = out.view(B, M, -1) # B x M x K_D
|
135 |
+
out = self.proj_out(out)
|
136 |
+
return out
|
137 |
+
|
138 |
+
|
139 |
+
class FeedForwardLayer(nn.Module):
|
140 |
+
def __init__(self, d_model, d_inner, dropout, **kargs):
|
141 |
+
nn.Module.__init__(self)
|
142 |
+
self.fc1 = nn.Linear(d_model, d_inner)
|
143 |
+
self.fc2 = nn.Linear(d_inner, d_model)
|
144 |
+
nn.init.xavier_uniform_(self.fc1.weight)
|
145 |
+
nn.init.xavier_uniform_(self.fc2.weight)
|
146 |
+
self.dropout = nn.Dropout(dropout)
|
147 |
+
|
148 |
+
def forward(self, h):
|
149 |
+
h1 = F.relu(self.fc1(h))
|
150 |
+
h1 = self.dropout(h1)
|
151 |
+
h2 = self.fc2(h1)
|
152 |
+
return h2
|
153 |
+
|
154 |
+
|
155 |
+
class TransformerSeqLayer(nn.Module):
|
156 |
+
def __init__(self, d_model, **kargs):
|
157 |
+
nn.Module.__init__(self)
|
158 |
+
self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs)
|
159 |
+
self.norm1 = LayerNorm(d_model)
|
160 |
+
self.ff = FeedForwardLayer(d_model=d_model, **kargs)
|
161 |
+
self.norm2 = LayerNorm(d_model)
|
162 |
+
|
163 |
+
def forward(self, h, h_cache, key_pe):
|
164 |
+
# h = B x M x H
|
165 |
+
# h_cache = B x L x H
|
166 |
+
h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H
|
167 |
+
attn_out = self.attn(h, h_all, h_all, key_pe)
|
168 |
+
h = self.norm1(h + attn_out) # B x M x H
|
169 |
+
if self.ff is not None:
|
170 |
+
ff_out = self.ff(h)
|
171 |
+
out = self.norm2(h + ff_out) # B x M x H
|
172 |
+
else:
|
173 |
+
out = h
|
174 |
+
return out
|
175 |
+
|
176 |
+
def get_cache_size(self):
|
177 |
+
return self.attn.attn.get_cache_size()
|
178 |
+
|
179 |
+
|
180 |
+
class TransformerSeq(nn.Module):
|
181 |
+
def __init__(
|
182 |
+
self,
|
183 |
+
vocab_size,
|
184 |
+
d_model,
|
185 |
+
n_head,
|
186 |
+
n_layer,
|
187 |
+
attn_span,
|
188 |
+
emb_dropout,
|
189 |
+
aux_loss_scaler,
|
190 |
+
adapt_span_layer,
|
191 |
+
**kargs
|
192 |
+
):
|
193 |
+
nn.Module.__init__(self)
|
194 |
+
# token embeddings
|
195 |
+
self.in_emb = nn.Embedding(vocab_size, d_model)
|
196 |
+
nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5)
|
197 |
+
self.out_emb = nn.Linear(d_model, vocab_size)
|
198 |
+
self.aux_loss_scaler = aux_loss_scaler
|
199 |
+
if emb_dropout > 0:
|
200 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
201 |
+
else:
|
202 |
+
self.emb_dropout = None
|
203 |
+
# position embeddings
|
204 |
+
self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span))
|
205 |
+
|
206 |
+
self.layers = nn.ModuleList()
|
207 |
+
self.layers.extend(
|
208 |
+
TransformerSeqLayer(
|
209 |
+
d_model=d_model,
|
210 |
+
n_head=n_head,
|
211 |
+
attn_span=attn_span,
|
212 |
+
adapt_span_layer=adapt_span_layer,
|
213 |
+
**kargs
|
214 |
+
)
|
215 |
+
for _ in range(n_layer)
|
216 |
+
)
|
217 |
+
|
218 |
+
def forward(self, x, h_cache, target=None):
|
219 |
+
# x size = B x M
|
220 |
+
block_size = x.size(1)
|
221 |
+
h = self.in_emb(x) # B x M x H
|
222 |
+
if self.emb_dropout is not None:
|
223 |
+
h = self.emb_dropout(h)
|
224 |
+
|
225 |
+
h_cache_next = []
|
226 |
+
for l, layer in enumerate(self.layers):
|
227 |
+
cache_size = layer.attn.attn.get_cache_size()
|
228 |
+
if cache_size > block_size:
|
229 |
+
h_cache_next_l = torch.cat(
|
230 |
+
[h_cache[l][:, -cache_size + block_size :, :], h], dim=1
|
231 |
+
).detach()
|
232 |
+
else:
|
233 |
+
h_cache_next_l = h[:, -cache_size:, :].detach()
|
234 |
+
h_cache_next.append(h_cache_next_l)
|
235 |
+
h = layer(h, h_cache[l], self.key_pe) # B x M x H
|
236 |
+
|
237 |
+
if self.emb_dropout is not None:
|
238 |
+
h = self.emb_dropout(h)
|
239 |
+
|
240 |
+
out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h)
|
241 |
+
dummy_loss = None
|
242 |
+
|
243 |
+
return out, h_cache_next, dummy_loss
|
244 |
+
|
245 |
+
def get_aux_loss(self):
|
246 |
+
loss = 0.0
|
247 |
+
for layer in self.layers:
|
248 |
+
loss += layer.attn.attn.adaptive_span.get_loss()
|
249 |
+
return self.aux_loss_scaler * loss
|
250 |
+
|
251 |
+
def get_current_max_span(self):
|
252 |
+
max_span = 0.0
|
253 |
+
for layer in self.layers:
|
254 |
+
max_span = max(
|
255 |
+
max_span, layer.attn.attn.adaptive_span.get_current_max_span()
|
256 |
+
)
|
257 |
+
return max_span
|
258 |
+
|
259 |
+
def get_current_avg_span(self):
|
260 |
+
avg_span = 0.0
|
261 |
+
for layer in self.layers:
|
262 |
+
avg_span += layer.attn.attn.adaptive_span.get_current_avg_span()
|
263 |
+
return avg_span / len(self.layers)
|
examples/adaptive_span/adaptive_span_model_wrapper.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import logging
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Dict, List, Optional
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from fairseq.dataclass import FairseqDataclass
|
12 |
+
from fairseq.models import (
|
13 |
+
FairseqIncrementalDecoder,
|
14 |
+
FairseqLanguageModel,
|
15 |
+
register_model,
|
16 |
+
)
|
17 |
+
from .adaptive_span_model import TransformerSeq as AdaptiveSpanTransformerModel
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class AdaptiveSpanSmallConfig(FairseqDataclass):
|
25 |
+
# defaults come from https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8_small.sh
|
26 |
+
vocab_size: int = 50
|
27 |
+
d_model: int = 256
|
28 |
+
n_head: int = 4
|
29 |
+
d_inner: int = 1024
|
30 |
+
n_layer: int = 8
|
31 |
+
attn_span: int = 1024
|
32 |
+
dropout: float = 0.0
|
33 |
+
emb_dropout: float = 0.0
|
34 |
+
adapt_span_ramp: int = 32
|
35 |
+
adapt_span_init: float = 0.0
|
36 |
+
aux_loss_scaler: float = 0.000002
|
37 |
+
adapt_span_layer: bool = False
|
38 |
+
|
39 |
+
|
40 |
+
@register_model("adaptive_span", dataclass=AdaptiveSpanSmallConfig)
|
41 |
+
class AdaptiveSpanTransformer(FairseqLanguageModel):
|
42 |
+
@classmethod
|
43 |
+
def build_model(cls, cfg: AdaptiveSpanSmallConfig, task):
|
44 |
+
return cls(AdaptiveSpanDecoder(cfg, task))
|
45 |
+
|
46 |
+
def get_aux_loss(self):
|
47 |
+
return self.decoder.get_aux_loss()
|
48 |
+
|
49 |
+
def get_current_max_span(self):
|
50 |
+
return self.decoder.get_current_max_span()
|
51 |
+
|
52 |
+
def get_current_avg_span(self):
|
53 |
+
return self.decoder.get_current_avg_span()
|
54 |
+
|
55 |
+
|
56 |
+
class AdaptiveSpanDecoder(FairseqIncrementalDecoder):
|
57 |
+
def __init__(self, cfg, task):
|
58 |
+
|
59 |
+
super().__init__(task.target_dictionary)
|
60 |
+
|
61 |
+
self.config = cfg
|
62 |
+
config = AdaptiveSpanSmallConfig(
|
63 |
+
vocab_size=len(task.target_dictionary),
|
64 |
+
d_model=cfg.d_model,
|
65 |
+
n_head=cfg.n_head,
|
66 |
+
d_inner=cfg.d_inner,
|
67 |
+
n_layer=cfg.n_layer,
|
68 |
+
attn_span=cfg.attn_span,
|
69 |
+
dropout=cfg.dropout,
|
70 |
+
emb_dropout=cfg.emb_dropout,
|
71 |
+
adapt_span_ramp=cfg.adapt_span_ramp,
|
72 |
+
adapt_span_init=cfg.adapt_span_init,
|
73 |
+
aux_loss_scaler=cfg.aux_loss_scaler,
|
74 |
+
adapt_span_layer=cfg.adapt_span_layer,
|
75 |
+
)
|
76 |
+
logger.info(config)
|
77 |
+
self.model = AdaptiveSpanTransformerModel(**config.__dict__)
|
78 |
+
|
79 |
+
self._mems = None
|
80 |
+
|
81 |
+
def forward(
|
82 |
+
self,
|
83 |
+
src_tokens,
|
84 |
+
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
|
85 |
+
encoder_out=None,
|
86 |
+
):
|
87 |
+
bsz = src_tokens.size(0)
|
88 |
+
if incremental_state is not None: # used during inference
|
89 |
+
mems = self.get_incremental_state("mems")
|
90 |
+
src_tokens = src_tokens[:, -1:] # only keep the most recent token
|
91 |
+
else:
|
92 |
+
mems = self._mems
|
93 |
+
|
94 |
+
if mems is None:
|
95 |
+
# first time init
|
96 |
+
mems = self.init_hid_cache(bsz)
|
97 |
+
output = self.model(x=src_tokens, h_cache=mems,)
|
98 |
+
if incremental_state is not None:
|
99 |
+
self.set_incremental_state(incremental_state, "mems", output[1])
|
100 |
+
else:
|
101 |
+
self._mems = output[1]
|
102 |
+
return (output[0],)
|
103 |
+
|
104 |
+
def max_positions(self):
|
105 |
+
return self.config.attn_span
|
106 |
+
|
107 |
+
def init_hid_cache(self, batch_sz):
|
108 |
+
hid = []
|
109 |
+
for layer in self.model.layers:
|
110 |
+
param = next(self.model.parameters())
|
111 |
+
h = torch.zeros(
|
112 |
+
batch_sz,
|
113 |
+
layer.get_cache_size(),
|
114 |
+
self.config.d_model,
|
115 |
+
dtype=param.dtype,
|
116 |
+
device=param.device,
|
117 |
+
)
|
118 |
+
hid.append(h)
|
119 |
+
return hid
|
120 |
+
|
121 |
+
def get_aux_loss(self):
|
122 |
+
return self.model.get_aux_loss()
|
123 |
+
|
124 |
+
def get_current_max_span(self):
|
125 |
+
return self.model.get_current_max_span()
|
126 |
+
|
127 |
+
def get_current_avg_span(self):
|
128 |
+
return self.model.get_current_avg_span()
|
129 |
+
|
130 |
+
def reorder_incremental_state(
|
131 |
+
self,
|
132 |
+
incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]],
|
133 |
+
new_order: torch.Tensor,
|
134 |
+
):
|
135 |
+
"""Reorder incremental state.
|
136 |
+
|
137 |
+
This will be called when the order of the input has changed from the
|
138 |
+
previous time step. A typical use case is beam search, where the input
|
139 |
+
order changes between time steps based on the selection of beams.
|
140 |
+
"""
|
141 |
+
raise NotImplementedError("This is required for generation/beam search")
|
142 |
+
# mems = self.get_incremental_state(incremental_state, "mems")
|
143 |
+
# if mems is not None:
|
144 |
+
# new_mems = [mems_i.index_select(1, new_order) for mems_i in mems]
|
145 |
+
# self.set_incremental_state(incremental_state, "mems", new_mems)
|
examples/adaptive_span/truncated_bptt_lm_task.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../truncated_bptt/truncated_bptt_lm_task.py
|
examples/backtranslation/README.md
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Understanding Back-Translation at Scale (Edunov et al., 2018)
|
2 |
+
|
3 |
+
This page includes pre-trained models from the paper [Understanding Back-Translation at Scale (Edunov et al., 2018)](https://arxiv.org/abs/1808.09381).
|
4 |
+
|
5 |
+
## Pre-trained models
|
6 |
+
|
7 |
+
Model | Description | Dataset | Download
|
8 |
+
---|---|---|---
|
9 |
+
`transformer.wmt18.en-de` | Transformer <br> ([Edunov et al., 2018](https://arxiv.org/abs/1808.09381)) <br> WMT'18 winner | [WMT'18 English-German](http://www.statmt.org/wmt18/translation-task.html) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz) <br> See NOTE in the archive
|
10 |
+
|
11 |
+
## Example usage (torch.hub)
|
12 |
+
|
13 |
+
We require a few additional Python dependencies for preprocessing:
|
14 |
+
```bash
|
15 |
+
pip install subword_nmt sacremoses
|
16 |
+
```
|
17 |
+
|
18 |
+
Then to generate translations from the full model ensemble:
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
|
22 |
+
# List available models
|
23 |
+
torch.hub.list('pytorch/fairseq') # [..., 'transformer.wmt18.en-de', ... ]
|
24 |
+
|
25 |
+
# Load the WMT'18 En-De ensemble
|
26 |
+
en2de_ensemble = torch.hub.load(
|
27 |
+
'pytorch/fairseq', 'transformer.wmt18.en-de',
|
28 |
+
checkpoint_file='wmt18.model1.pt:wmt18.model2.pt:wmt18.model3.pt:wmt18.model4.pt:wmt18.model5.pt',
|
29 |
+
tokenizer='moses', bpe='subword_nmt')
|
30 |
+
|
31 |
+
# The ensemble contains 5 models
|
32 |
+
len(en2de_ensemble.models)
|
33 |
+
# 5
|
34 |
+
|
35 |
+
# Translate
|
36 |
+
en2de_ensemble.translate('Hello world!')
|
37 |
+
# 'Hallo Welt!'
|
38 |
+
```
|
39 |
+
|
40 |
+
## Training your own model (WMT'18 English-German)
|
41 |
+
|
42 |
+
The following instructions can be adapted to reproduce the models from the paper.
|
43 |
+
|
44 |
+
|
45 |
+
#### Step 1. Prepare parallel data and optionally train a baseline (English-German) model
|
46 |
+
|
47 |
+
First download and preprocess the data:
|
48 |
+
```bash
|
49 |
+
# Download and prepare the data
|
50 |
+
cd examples/backtranslation/
|
51 |
+
bash prepare-wmt18en2de.sh
|
52 |
+
cd ../..
|
53 |
+
|
54 |
+
# Binarize the data
|
55 |
+
TEXT=examples/backtranslation/wmt18_en_de
|
56 |
+
fairseq-preprocess \
|
57 |
+
--joined-dictionary \
|
58 |
+
--source-lang en --target-lang de \
|
59 |
+
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
|
60 |
+
--destdir data-bin/wmt18_en_de --thresholdtgt 0 --thresholdsrc 0 \
|
61 |
+
--workers 20
|
62 |
+
|
63 |
+
# Copy the BPE code into the data-bin directory for future use
|
64 |
+
cp examples/backtranslation/wmt18_en_de/code data-bin/wmt18_en_de/code
|
65 |
+
```
|
66 |
+
|
67 |
+
(Optionally) Train a baseline model (English-German) using just the parallel data:
|
68 |
+
```bash
|
69 |
+
CHECKPOINT_DIR=checkpoints_en_de_parallel
|
70 |
+
fairseq-train --fp16 \
|
71 |
+
data-bin/wmt18_en_de \
|
72 |
+
--source-lang en --target-lang de \
|
73 |
+
--arch transformer_wmt_en_de_big --share-all-embeddings \
|
74 |
+
--dropout 0.3 --weight-decay 0.0 \
|
75 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
76 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
77 |
+
--lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
78 |
+
--max-tokens 3584 --update-freq 16 \
|
79 |
+
--max-update 30000 \
|
80 |
+
--save-dir $CHECKPOINT_DIR
|
81 |
+
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
|
82 |
+
# different number of GPUs.
|
83 |
+
```
|
84 |
+
|
85 |
+
Average the last 10 checkpoints:
|
86 |
+
```bash
|
87 |
+
python scripts/average_checkpoints.py \
|
88 |
+
--inputs $CHECKPOINT_DIR \
|
89 |
+
--num-epoch-checkpoints 10 \
|
90 |
+
--output $CHECKPOINT_DIR/checkpoint.avg10.pt
|
91 |
+
```
|
92 |
+
|
93 |
+
Evaluate BLEU:
|
94 |
+
```bash
|
95 |
+
# tokenized BLEU on newstest2017:
|
96 |
+
bash examples/backtranslation/tokenized_bleu.sh \
|
97 |
+
wmt17 \
|
98 |
+
en-de \
|
99 |
+
data-bin/wmt18_en_de \
|
100 |
+
data-bin/wmt18_en_de/code \
|
101 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
102 |
+
# BLEU4 = 29.57, 60.9/35.4/22.9/15.5 (BP=1.000, ratio=1.014, syslen=63049, reflen=62152)
|
103 |
+
# compare to 29.46 in Table 1, which is also for tokenized BLEU
|
104 |
+
|
105 |
+
# generally it's better to report (detokenized) sacrebleu though:
|
106 |
+
bash examples/backtranslation/sacrebleu.sh \
|
107 |
+
wmt17 \
|
108 |
+
en-de \
|
109 |
+
data-bin/wmt18_en_de \
|
110 |
+
data-bin/wmt18_en_de/code \
|
111 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
112 |
+
# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 29.0 60.6/34.7/22.4/14.9 (BP = 1.000 ratio = 1.013 hyp_len = 62099 ref_len = 61287)
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
#### Step 2. Back-translate monolingual German data
|
117 |
+
|
118 |
+
Train a reverse model (German-English) to do the back-translation:
|
119 |
+
```bash
|
120 |
+
CHECKPOINT_DIR=checkpoints_de_en_parallel
|
121 |
+
fairseq-train --fp16 \
|
122 |
+
data-bin/wmt18_en_de \
|
123 |
+
--source-lang de --target-lang en \
|
124 |
+
--arch transformer_wmt_en_de_big --share-all-embeddings \
|
125 |
+
--dropout 0.3 --weight-decay 0.0 \
|
126 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
127 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
128 |
+
--lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
129 |
+
--max-tokens 3584 --update-freq 16 \
|
130 |
+
--max-update 30000 \
|
131 |
+
--save-dir $CHECKPOINT_DIR
|
132 |
+
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
|
133 |
+
# different number of GPUs.
|
134 |
+
```
|
135 |
+
|
136 |
+
Let's evaluate the back-translation (BT) model to make sure it is well trained:
|
137 |
+
```bash
|
138 |
+
bash examples/backtranslation/sacrebleu.sh \
|
139 |
+
wmt17 \
|
140 |
+
de-en \
|
141 |
+
data-bin/wmt18_en_de \
|
142 |
+
data-bin/wmt18_en_de/code \
|
143 |
+
$CHECKPOINT_DIR/checkpoint_best.py
|
144 |
+
# BLEU+case.mixed+lang.de-en+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 34.9 66.9/41.8/28.5/19.9 (BP = 0.983 ratio = 0.984 hyp_len = 63342 ref_len = 64399)
|
145 |
+
# compare to the best system from WMT'17 which scored 35.1: http://matrix.statmt.org/matrix/systems_list/1868
|
146 |
+
```
|
147 |
+
|
148 |
+
Next prepare the monolingual data:
|
149 |
+
```bash
|
150 |
+
# Download and prepare the monolingual data
|
151 |
+
# By default the script samples 25M monolingual sentences, which after
|
152 |
+
# deduplication should be just over 24M sentences. These are split into 25
|
153 |
+
# shards, each with 1M sentences (except for the last shard).
|
154 |
+
cd examples/backtranslation/
|
155 |
+
bash prepare-de-monolingual.sh
|
156 |
+
cd ../..
|
157 |
+
|
158 |
+
# Binarize each shard of the monolingual data
|
159 |
+
TEXT=examples/backtranslation/wmt18_de_mono
|
160 |
+
for SHARD in $(seq -f "%02g" 0 24); do \
|
161 |
+
fairseq-preprocess \
|
162 |
+
--only-source \
|
163 |
+
--source-lang de --target-lang en \
|
164 |
+
--joined-dictionary \
|
165 |
+
--srcdict data-bin/wmt18_en_de/dict.de.txt \
|
166 |
+
--testpref $TEXT/bpe.monolingual.dedup.${SHARD} \
|
167 |
+
--destdir data-bin/wmt18_de_mono/shard${SHARD} \
|
168 |
+
--workers 20; \
|
169 |
+
cp data-bin/wmt18_en_de/dict.en.txt data-bin/wmt18_de_mono/shard${SHARD}/; \
|
170 |
+
done
|
171 |
+
```
|
172 |
+
|
173 |
+
Now we're ready to perform back-translation over the monolingual data. The
|
174 |
+
following command generates via sampling, but it's possible to use greedy
|
175 |
+
decoding (`--beam 1`), beam search (`--beam 5`),
|
176 |
+
top-k sampling (`--sampling --beam 1 --sampling-topk 10`), etc.:
|
177 |
+
```bash
|
178 |
+
mkdir backtranslation_output
|
179 |
+
for SHARD in $(seq -f "%02g" 0 24); do \
|
180 |
+
fairseq-generate --fp16 \
|
181 |
+
data-bin/wmt18_de_mono/shard${SHARD} \
|
182 |
+
--path $CHECKPOINT_DIR/checkpoint_best.pt \
|
183 |
+
--skip-invalid-size-inputs-valid-test \
|
184 |
+
--max-tokens 4096 \
|
185 |
+
--sampling --beam 1 \
|
186 |
+
> backtranslation_output/sampling.shard${SHARD}.out; \
|
187 |
+
done
|
188 |
+
```
|
189 |
+
|
190 |
+
After BT, use the `extract_bt_data.py` script to re-combine the shards, extract
|
191 |
+
the back-translations and apply length ratio filters:
|
192 |
+
```bash
|
193 |
+
python examples/backtranslation/extract_bt_data.py \
|
194 |
+
--minlen 1 --maxlen 250 --ratio 1.5 \
|
195 |
+
--output backtranslation_output/bt_data --srclang en --tgtlang de \
|
196 |
+
backtranslation_output/sampling.shard*.out
|
197 |
+
|
198 |
+
# Ensure lengths are the same:
|
199 |
+
# wc -l backtranslation_output/bt_data.{en,de}
|
200 |
+
# 21795614 backtranslation_output/bt_data.en
|
201 |
+
# 21795614 backtranslation_output/bt_data.de
|
202 |
+
# 43591228 total
|
203 |
+
```
|
204 |
+
|
205 |
+
Binarize the filtered BT data and combine it with the parallel data:
|
206 |
+
```bash
|
207 |
+
TEXT=backtranslation_output
|
208 |
+
fairseq-preprocess \
|
209 |
+
--source-lang en --target-lang de \
|
210 |
+
--joined-dictionary \
|
211 |
+
--srcdict data-bin/wmt18_en_de/dict.en.txt \
|
212 |
+
--trainpref $TEXT/bt_data \
|
213 |
+
--destdir data-bin/wmt18_en_de_bt \
|
214 |
+
--workers 20
|
215 |
+
|
216 |
+
# We want to train on the combined data, so we'll symlink the parallel + BT data
|
217 |
+
# in the wmt18_en_de_para_plus_bt directory. We link the parallel data as "train"
|
218 |
+
# and the BT data as "train1", so that fairseq will combine them automatically
|
219 |
+
# and so that we can use the `--upsample-primary` option to upsample the
|
220 |
+
# parallel data (if desired).
|
221 |
+
PARA_DATA=$(readlink -f data-bin/wmt18_en_de)
|
222 |
+
BT_DATA=$(readlink -f data-bin/wmt18_en_de_bt)
|
223 |
+
COMB_DATA=data-bin/wmt18_en_de_para_plus_bt
|
224 |
+
mkdir -p $COMB_DATA
|
225 |
+
for LANG in en de; do \
|
226 |
+
ln -s ${PARA_DATA}/dict.$LANG.txt ${COMB_DATA}/dict.$LANG.txt; \
|
227 |
+
for EXT in bin idx; do \
|
228 |
+
ln -s ${PARA_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train.en-de.$LANG.$EXT; \
|
229 |
+
ln -s ${BT_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train1.en-de.$LANG.$EXT; \
|
230 |
+
ln -s ${PARA_DATA}/valid.en-de.$LANG.$EXT ${COMB_DATA}/valid.en-de.$LANG.$EXT; \
|
231 |
+
ln -s ${PARA_DATA}/test.en-de.$LANG.$EXT ${COMB_DATA}/test.en-de.$LANG.$EXT; \
|
232 |
+
done; \
|
233 |
+
done
|
234 |
+
```
|
235 |
+
|
236 |
+
|
237 |
+
#### 3. Train an English-German model over the combined parallel + BT data
|
238 |
+
|
239 |
+
Finally we can train a model over the parallel + BT data:
|
240 |
+
```bash
|
241 |
+
CHECKPOINT_DIR=checkpoints_en_de_parallel_plus_bt
|
242 |
+
fairseq-train --fp16 \
|
243 |
+
data-bin/wmt18_en_de_para_plus_bt \
|
244 |
+
--upsample-primary 16 \
|
245 |
+
--source-lang en --target-lang de \
|
246 |
+
--arch transformer_wmt_en_de_big --share-all-embeddings \
|
247 |
+
--dropout 0.3 --weight-decay 0.0 \
|
248 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
249 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
250 |
+
--lr 0.0007 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
251 |
+
--max-tokens 3584 --update-freq 16 \
|
252 |
+
--max-update 100000 \
|
253 |
+
--save-dir $CHECKPOINT_DIR
|
254 |
+
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
|
255 |
+
# different number of GPUs.
|
256 |
+
```
|
257 |
+
|
258 |
+
Average the last 10 checkpoints:
|
259 |
+
```bash
|
260 |
+
python scripts/average_checkpoints.py \
|
261 |
+
--inputs $CHECKPOINT_DIR \
|
262 |
+
--num-epoch-checkpoints 10 \
|
263 |
+
--output $CHECKPOINT_DIR/checkpoint.avg10.pt
|
264 |
+
```
|
265 |
+
|
266 |
+
Evaluate BLEU:
|
267 |
+
```bash
|
268 |
+
# tokenized BLEU on newstest2017:
|
269 |
+
bash examples/backtranslation/tokenized_bleu.sh \
|
270 |
+
wmt17 \
|
271 |
+
en-de \
|
272 |
+
data-bin/wmt18_en_de \
|
273 |
+
data-bin/wmt18_en_de/code \
|
274 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
275 |
+
# BLEU4 = 32.35, 64.4/38.9/26.2/18.3 (BP=0.977, ratio=0.977, syslen=60729, reflen=62152)
|
276 |
+
# compare to 32.35 in Table 1, which is also for tokenized BLEU
|
277 |
+
|
278 |
+
# generally it's better to report (detokenized) sacrebleu:
|
279 |
+
bash examples/backtranslation/sacrebleu.sh \
|
280 |
+
wmt17 \
|
281 |
+
en-de \
|
282 |
+
data-bin/wmt18_en_de \
|
283 |
+
data-bin/wmt18_en_de/code \
|
284 |
+
$CHECKPOINT_DIR/checkpoint.avg10.pt
|
285 |
+
# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 31.5 64.3/38.2/25.6/17.6 (BP = 0.971 ratio = 0.971 hyp_len = 59515 ref_len = 61287)
|
286 |
+
```
|
287 |
+
|
288 |
+
|
289 |
+
## Citation
|
290 |
+
```bibtex
|
291 |
+
@inproceedings{edunov2018backtranslation,
|
292 |
+
title = {Understanding Back-Translation at Scale},
|
293 |
+
author = {Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David},
|
294 |
+
booktitle = {Conference of the Association for Computational Linguistics (ACL)},
|
295 |
+
year = 2018,
|
296 |
+
}
|
297 |
+
```
|
examples/backtranslation/deduplicate_lines.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import fileinput
|
9 |
+
import hashlib
|
10 |
+
import sys
|
11 |
+
from multiprocessing import Pool
|
12 |
+
|
13 |
+
|
14 |
+
def get_hashes_and_lines(raw_line):
|
15 |
+
hash = hashlib.md5(raw_line).hexdigest()
|
16 |
+
return hash, raw_line
|
17 |
+
|
18 |
+
|
19 |
+
def main():
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument("--workers", type=int, default=10)
|
22 |
+
parser.add_argument("files", nargs="*", help="input files")
|
23 |
+
args = parser.parse_args()
|
24 |
+
|
25 |
+
seen = set()
|
26 |
+
with fileinput.input(args.files, mode="rb") as h:
|
27 |
+
pool = Pool(args.workers)
|
28 |
+
results = pool.imap_unordered(get_hashes_and_lines, h, 1000)
|
29 |
+
for i, (hash, raw_line) in enumerate(results):
|
30 |
+
if hash not in seen:
|
31 |
+
seen.add(hash)
|
32 |
+
sys.stdout.buffer.write(raw_line)
|
33 |
+
if i % 1000000 == 0:
|
34 |
+
print(i, file=sys.stderr, end="", flush=True)
|
35 |
+
elif i % 100000 == 0:
|
36 |
+
print(".", file=sys.stderr, end="", flush=True)
|
37 |
+
print(file=sys.stderr, flush=True)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|
examples/backtranslation/extract_bt_data.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import fileinput
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
|
13 |
+
def main():
|
14 |
+
parser = argparse.ArgumentParser(
|
15 |
+
description=(
|
16 |
+
"Extract back-translations from the stdout of fairseq-generate. "
|
17 |
+
"If there are multiply hypotheses for a source, we only keep the first one. "
|
18 |
+
)
|
19 |
+
)
|
20 |
+
parser.add_argument("--output", required=True, help="output prefix")
|
21 |
+
parser.add_argument(
|
22 |
+
"--srclang", required=True, help="source language (extracted from H-* lines)"
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--tgtlang", required=True, help="target language (extracted from S-* lines)"
|
26 |
+
)
|
27 |
+
parser.add_argument("--minlen", type=int, help="min length filter")
|
28 |
+
parser.add_argument("--maxlen", type=int, help="max length filter")
|
29 |
+
parser.add_argument("--ratio", type=float, help="ratio filter")
|
30 |
+
parser.add_argument("files", nargs="*", help="input files")
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
def validate(src, tgt):
|
34 |
+
srclen = len(src.split(" ")) if src != "" else 0
|
35 |
+
tgtlen = len(tgt.split(" ")) if tgt != "" else 0
|
36 |
+
if (
|
37 |
+
(args.minlen is not None and (srclen < args.minlen or tgtlen < args.minlen))
|
38 |
+
or (
|
39 |
+
args.maxlen is not None
|
40 |
+
and (srclen > args.maxlen or tgtlen > args.maxlen)
|
41 |
+
)
|
42 |
+
or (
|
43 |
+
args.ratio is not None
|
44 |
+
and (max(srclen, tgtlen) / float(min(srclen, tgtlen)) > args.ratio)
|
45 |
+
)
|
46 |
+
):
|
47 |
+
return False
|
48 |
+
return True
|
49 |
+
|
50 |
+
def safe_index(toks, index, default):
|
51 |
+
try:
|
52 |
+
return toks[index]
|
53 |
+
except IndexError:
|
54 |
+
return default
|
55 |
+
|
56 |
+
with open(args.output + "." + args.srclang, "w") as src_h, open(
|
57 |
+
args.output + "." + args.tgtlang, "w"
|
58 |
+
) as tgt_h:
|
59 |
+
for line in tqdm(fileinput.input(args.files)):
|
60 |
+
if line.startswith("S-"):
|
61 |
+
tgt = safe_index(line.rstrip().split("\t"), 1, "")
|
62 |
+
elif line.startswith("H-"):
|
63 |
+
if tgt is not None:
|
64 |
+
src = safe_index(line.rstrip().split("\t"), 2, "")
|
65 |
+
if validate(src, tgt):
|
66 |
+
print(src, file=src_h)
|
67 |
+
print(tgt, file=tgt_h)
|
68 |
+
tgt = None
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
main()
|
examples/backtranslation/prepare-de-monolingual.sh
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
SCRIPTS=mosesdecoder/scripts
|
4 |
+
TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
|
5 |
+
NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
|
6 |
+
REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
|
7 |
+
BPEROOT=subword-nmt/subword_nmt
|
8 |
+
|
9 |
+
|
10 |
+
BPE_CODE=wmt18_en_de/code
|
11 |
+
SUBSAMPLE_SIZE=25000000
|
12 |
+
LANG=de
|
13 |
+
|
14 |
+
|
15 |
+
OUTDIR=wmt18_${LANG}_mono
|
16 |
+
orig=orig
|
17 |
+
tmp=$OUTDIR/tmp
|
18 |
+
mkdir -p $OUTDIR $tmp
|
19 |
+
|
20 |
+
|
21 |
+
URLS=(
|
22 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2007.de.shuffled.gz"
|
23 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2008.de.shuffled.gz"
|
24 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2009.de.shuffled.gz"
|
25 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2010.de.shuffled.gz"
|
26 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2011.de.shuffled.gz"
|
27 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.de.shuffled.gz"
|
28 |
+
"http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.de.shuffled.gz"
|
29 |
+
"http://www.statmt.org/wmt15/training-monolingual-news-crawl-v2/news.2014.de.shuffled.v2.gz"
|
30 |
+
"http://data.statmt.org/wmt16/translation-task/news.2015.de.shuffled.gz"
|
31 |
+
"http://data.statmt.org/wmt17/translation-task/news.2016.de.shuffled.gz"
|
32 |
+
"http://data.statmt.org/wmt18/translation-task/news.2017.de.shuffled.deduped.gz"
|
33 |
+
)
|
34 |
+
FILES=(
|
35 |
+
"news.2007.de.shuffled.gz"
|
36 |
+
"news.2008.de.shuffled.gz"
|
37 |
+
"news.2009.de.shuffled.gz"
|
38 |
+
"news.2010.de.shuffled.gz"
|
39 |
+
"news.2011.de.shuffled.gz"
|
40 |
+
"news.2012.de.shuffled.gz"
|
41 |
+
"news.2013.de.shuffled.gz"
|
42 |
+
"news.2014.de.shuffled.v2.gz"
|
43 |
+
"news.2015.de.shuffled.gz"
|
44 |
+
"news.2016.de.shuffled.gz"
|
45 |
+
"news.2017.de.shuffled.deduped.gz"
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
cd $orig
|
50 |
+
for ((i=0;i<${#URLS[@]};++i)); do
|
51 |
+
file=${FILES[i]}
|
52 |
+
if [ -f $file ]; then
|
53 |
+
echo "$file already exists, skipping download"
|
54 |
+
else
|
55 |
+
url=${URLS[i]}
|
56 |
+
wget "$url"
|
57 |
+
fi
|
58 |
+
done
|
59 |
+
cd ..
|
60 |
+
|
61 |
+
|
62 |
+
if [ -f $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG} ]; then
|
63 |
+
echo "found monolingual sample, skipping shuffle/sample/tokenize"
|
64 |
+
else
|
65 |
+
gzip -c -d -k $(for FILE in "${FILES[@]}"; do echo $orig/$FILE; done) \
|
66 |
+
| shuf -n $SUBSAMPLE_SIZE \
|
67 |
+
| perl $NORM_PUNC $LANG \
|
68 |
+
| perl $REM_NON_PRINT_CHAR \
|
69 |
+
| perl $TOKENIZER -threads 8 -a -l $LANG \
|
70 |
+
> $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG}
|
71 |
+
fi
|
72 |
+
|
73 |
+
|
74 |
+
if [ -f $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG} ]; then
|
75 |
+
echo "found BPE monolingual sample, skipping BPE step"
|
76 |
+
else
|
77 |
+
python $BPEROOT/apply_bpe.py -c $BPE_CODE \
|
78 |
+
< $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG} \
|
79 |
+
> $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG}
|
80 |
+
fi
|
81 |
+
|
82 |
+
|
83 |
+
if [ -f $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG} ]; then
|
84 |
+
echo "found deduplicated monolingual sample, skipping deduplication step"
|
85 |
+
else
|
86 |
+
python deduplicate_lines.py $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG} \
|
87 |
+
> $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG}
|
88 |
+
fi
|
89 |
+
|
90 |
+
|
91 |
+
if [ -f $OUTDIR/bpe.monolingual.dedup.00.de ]; then
|
92 |
+
echo "found sharded data, skipping sharding step"
|
93 |
+
else
|
94 |
+
split --lines 1000000 --numeric-suffixes \
|
95 |
+
--additional-suffix .${LANG} \
|
96 |
+
$tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG} \
|
97 |
+
$OUTDIR/bpe.monolingual.dedup.
|
98 |
+
fi
|
examples/backtranslation/prepare-wmt18en2de.sh
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Adapted from https://github.com/facebookresearch/MIXER/blob/master/prepareData.sh
|
3 |
+
|
4 |
+
echo 'Cloning Moses github repository (for tokenization scripts)...'
|
5 |
+
git clone https://github.com/moses-smt/mosesdecoder.git
|
6 |
+
|
7 |
+
echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
|
8 |
+
git clone https://github.com/rsennrich/subword-nmt.git
|
9 |
+
|
10 |
+
SCRIPTS=mosesdecoder/scripts
|
11 |
+
TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
|
12 |
+
CLEAN=$SCRIPTS/training/clean-corpus-n.perl
|
13 |
+
NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
|
14 |
+
REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
|
15 |
+
BPEROOT=subword-nmt/subword_nmt
|
16 |
+
BPE_TOKENS=32000
|
17 |
+
|
18 |
+
URLS=(
|
19 |
+
"http://statmt.org/wmt13/training-parallel-europarl-v7.tgz"
|
20 |
+
"http://statmt.org/wmt13/training-parallel-commoncrawl.tgz"
|
21 |
+
"http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz"
|
22 |
+
"http://data.statmt.org/wmt18/translation-task/rapid2016.tgz"
|
23 |
+
"http://data.statmt.org/wmt17/translation-task/dev.tgz"
|
24 |
+
"http://statmt.org/wmt14/test-full.tgz"
|
25 |
+
)
|
26 |
+
FILES=(
|
27 |
+
"training-parallel-europarl-v7.tgz"
|
28 |
+
"training-parallel-commoncrawl.tgz"
|
29 |
+
"training-parallel-nc-v13.tgz"
|
30 |
+
"rapid2016.tgz"
|
31 |
+
"dev.tgz"
|
32 |
+
"test-full.tgz"
|
33 |
+
)
|
34 |
+
CORPORA=(
|
35 |
+
"training/europarl-v7.de-en"
|
36 |
+
"commoncrawl.de-en"
|
37 |
+
"training-parallel-nc-v13/news-commentary-v13.de-en"
|
38 |
+
"rapid2016.de-en"
|
39 |
+
)
|
40 |
+
|
41 |
+
if [ ! -d "$SCRIPTS" ]; then
|
42 |
+
echo "Please set SCRIPTS variable correctly to point to Moses scripts."
|
43 |
+
exit 1
|
44 |
+
fi
|
45 |
+
|
46 |
+
OUTDIR=wmt18_en_de
|
47 |
+
|
48 |
+
src=en
|
49 |
+
tgt=de
|
50 |
+
lang=en-de
|
51 |
+
prep=$OUTDIR
|
52 |
+
tmp=$prep/tmp
|
53 |
+
orig=orig
|
54 |
+
|
55 |
+
mkdir -p $orig $tmp $prep
|
56 |
+
|
57 |
+
cd $orig
|
58 |
+
|
59 |
+
for ((i=0;i<${#URLS[@]};++i)); do
|
60 |
+
file=${FILES[i]}
|
61 |
+
if [ -f $file ]; then
|
62 |
+
echo "$file already exists, skipping download"
|
63 |
+
else
|
64 |
+
url=${URLS[i]}
|
65 |
+
wget "$url"
|
66 |
+
if [ -f $file ]; then
|
67 |
+
echo "$url successfully downloaded."
|
68 |
+
else
|
69 |
+
echo "$url not successfully downloaded."
|
70 |
+
exit 1
|
71 |
+
fi
|
72 |
+
if [ ${file: -4} == ".tgz" ]; then
|
73 |
+
tar zxvf $file
|
74 |
+
elif [ ${file: -4} == ".tar" ]; then
|
75 |
+
tar xvf $file
|
76 |
+
fi
|
77 |
+
fi
|
78 |
+
done
|
79 |
+
cd ..
|
80 |
+
|
81 |
+
echo "pre-processing train data..."
|
82 |
+
for l in $src $tgt; do
|
83 |
+
rm $tmp/train.tags.$lang.tok.$l
|
84 |
+
for f in "${CORPORA[@]}"; do
|
85 |
+
cat $orig/$f.$l | \
|
86 |
+
perl $NORM_PUNC $l | \
|
87 |
+
perl $REM_NON_PRINT_CHAR | \
|
88 |
+
perl $TOKENIZER -threads 8 -a -l $l >> $tmp/train.tags.$lang.tok.$l
|
89 |
+
done
|
90 |
+
done
|
91 |
+
|
92 |
+
echo "pre-processing test data..."
|
93 |
+
for l in $src $tgt; do
|
94 |
+
if [ "$l" == "$src" ]; then
|
95 |
+
t="src"
|
96 |
+
else
|
97 |
+
t="ref"
|
98 |
+
fi
|
99 |
+
grep '<seg id' $orig/test-full/newstest2014-deen-$t.$l.sgm | \
|
100 |
+
sed -e 's/<seg id="[0-9]*">\s*//g' | \
|
101 |
+
sed -e 's/\s*<\/seg>\s*//g' | \
|
102 |
+
sed -e "s/\’/\'/g" | \
|
103 |
+
perl $TOKENIZER -threads 8 -a -l $l > $tmp/test.$l
|
104 |
+
echo ""
|
105 |
+
done
|
106 |
+
|
107 |
+
echo "splitting train and valid..."
|
108 |
+
for l in $src $tgt; do
|
109 |
+
awk '{if (NR%100 == 0) print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/valid.$l
|
110 |
+
awk '{if (NR%100 != 0) print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/train.$l
|
111 |
+
done
|
112 |
+
|
113 |
+
TRAIN=$tmp/train.de-en
|
114 |
+
BPE_CODE=$prep/code
|
115 |
+
rm -f $TRAIN
|
116 |
+
for l in $src $tgt; do
|
117 |
+
cat $tmp/train.$l >> $TRAIN
|
118 |
+
done
|
119 |
+
|
120 |
+
echo "learn_bpe.py on ${TRAIN}..."
|
121 |
+
python $BPEROOT/learn_bpe.py -s $BPE_TOKENS < $TRAIN > $BPE_CODE
|
122 |
+
|
123 |
+
for L in $src $tgt; do
|
124 |
+
for f in train.$L valid.$L test.$L; do
|
125 |
+
echo "apply_bpe.py to ${f}..."
|
126 |
+
python $BPEROOT/apply_bpe.py -c $BPE_CODE < $tmp/$f > $tmp/bpe.$f
|
127 |
+
done
|
128 |
+
done
|
129 |
+
|
130 |
+
perl $CLEAN -ratio 1.5 $tmp/bpe.train $src $tgt $prep/train 1 250
|
131 |
+
perl $CLEAN -ratio 1.5 $tmp/bpe.valid $src $tgt $prep/valid 1 250
|
132 |
+
|
133 |
+
for L in $src $tgt; do
|
134 |
+
cp $tmp/bpe.test.$L $prep/test.$L
|
135 |
+
done
|
examples/backtranslation/sacrebleu.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
if [ $# -ne 5 ]; then
|
4 |
+
echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]"
|
5 |
+
exit
|
6 |
+
fi
|
7 |
+
|
8 |
+
|
9 |
+
DATASET=$1
|
10 |
+
LANGPAIR=$2
|
11 |
+
DATABIN=$3
|
12 |
+
BPECODE=$4
|
13 |
+
MODEL=$5
|
14 |
+
|
15 |
+
SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1)
|
16 |
+
TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2)
|
17 |
+
|
18 |
+
|
19 |
+
BPEROOT=examples/backtranslation/subword-nmt/subword_nmt
|
20 |
+
if [ ! -e $BPEROOT ]; then
|
21 |
+
BPEROOT=subword-nmt/subword_nmt
|
22 |
+
if [ ! -e $BPEROOT ]; then
|
23 |
+
echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
|
24 |
+
git clone https://github.com/rsennrich/subword-nmt.git
|
25 |
+
fi
|
26 |
+
fi
|
27 |
+
|
28 |
+
|
29 |
+
sacrebleu -t $DATASET -l $LANGPAIR --echo src \
|
30 |
+
| sacremoses tokenize -a -l $SRCLANG -q \
|
31 |
+
| python $BPEROOT/apply_bpe.py -c $BPECODE \
|
32 |
+
| fairseq-interactive $DATABIN --path $MODEL \
|
33 |
+
-s $SRCLANG -t $TGTLANG \
|
34 |
+
--beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \
|
35 |
+
| grep ^H- | cut -f 3- \
|
36 |
+
| sacremoses detokenize -l $TGTLANG -q \
|
37 |
+
| sacrebleu -t $DATASET -l $LANGPAIR
|
examples/backtranslation/tokenized_bleu.sh
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
if [ $# -ne 5 ]; then
|
4 |
+
echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]"
|
5 |
+
exit
|
6 |
+
fi
|
7 |
+
|
8 |
+
|
9 |
+
DATASET=$1
|
10 |
+
LANGPAIR=$2
|
11 |
+
DATABIN=$3
|
12 |
+
BPECODE=$4
|
13 |
+
MODEL=$5
|
14 |
+
|
15 |
+
SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1)
|
16 |
+
TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2)
|
17 |
+
|
18 |
+
|
19 |
+
BPEROOT=examples/backtranslation/subword-nmt/subword_nmt
|
20 |
+
if [ ! -e $BPEROOT ]; then
|
21 |
+
BPEROOT=subword-nmt/subword_nmt
|
22 |
+
if [ ! -e $BPEROOT ]; then
|
23 |
+
echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
|
24 |
+
git clone https://github.com/rsennrich/subword-nmt.git
|
25 |
+
fi
|
26 |
+
fi
|
27 |
+
|
28 |
+
|
29 |
+
TMP_REF=$(mktemp)
|
30 |
+
|
31 |
+
sacrebleu -t $DATASET -l $LANGPAIR --echo ref -q \
|
32 |
+
| sacremoses normalize -l $TGTLANG -q \
|
33 |
+
| sacremoses tokenize -a -l $TGTLANG -q \
|
34 |
+
> $TMP_REF
|
35 |
+
|
36 |
+
sacrebleu -t $DATASET -l $LANGPAIR --echo src -q \
|
37 |
+
| sacremoses normalize -l $SRCLANG -q \
|
38 |
+
| sacremoses tokenize -a -l $SRCLANG -q \
|
39 |
+
| python $BPEROOT/apply_bpe.py -c $BPECODE \
|
40 |
+
| fairseq-interactive $DATABIN --path $MODEL \
|
41 |
+
-s $SRCLANG -t $TGTLANG \
|
42 |
+
--beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \
|
43 |
+
| grep ^H- | cut -f 3- \
|
44 |
+
| fairseq-score --ref $TMP_REF
|
45 |
+
|
46 |
+
rm -f $TMP_REF
|
examples/bart/README.glue.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fine-tuning BART on GLUE tasks
|
2 |
+
|
3 |
+
### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:
|
4 |
+
```bash
|
5 |
+
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
|
6 |
+
python download_glue_data.py --data_dir glue_data --tasks all
|
7 |
+
```
|
8 |
+
|
9 |
+
### 2) Preprocess GLUE task data (same as RoBERTa):
|
10 |
+
```bash
|
11 |
+
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name>
|
12 |
+
```
|
13 |
+
`glue_task_name` is one of the following:
|
14 |
+
`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}`
|
15 |
+
Use `ALL` for preprocessing all the glue tasks.
|
16 |
+
|
17 |
+
### 3) Fine-tuning on GLUE task:
|
18 |
+
Example fine-tuning cmd for `RTE` task
|
19 |
+
```bash
|
20 |
+
TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16
|
21 |
+
WARMUP_UPDATES=61 # 6 percent of the number of updates
|
22 |
+
LR=1e-05 # Peak LR for polynomial LR scheduler.
|
23 |
+
NUM_CLASSES=2
|
24 |
+
MAX_SENTENCES=16 # Batch size.
|
25 |
+
BART_PATH=/path/to/bart/model.pt
|
26 |
+
|
27 |
+
CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \
|
28 |
+
--restore-file $BART_PATH \
|
29 |
+
--batch-size $MAX_SENTENCES \
|
30 |
+
--max-tokens 4400 \
|
31 |
+
--task sentence_prediction \
|
32 |
+
--add-prev-output-tokens \
|
33 |
+
--layernorm-embedding \
|
34 |
+
--share-all-embeddings \
|
35 |
+
--share-decoder-input-output-embed \
|
36 |
+
--reset-optimizer --reset-dataloader --reset-meters \
|
37 |
+
--required-batch-size-multiple 1 \
|
38 |
+
--init-token 0 \
|
39 |
+
--arch bart_large \
|
40 |
+
--criterion sentence_prediction \
|
41 |
+
--num-classes $NUM_CLASSES \
|
42 |
+
--dropout 0.1 --attention-dropout 0.1 \
|
43 |
+
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \
|
44 |
+
--clip-norm 0.0 \
|
45 |
+
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
|
46 |
+
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
|
47 |
+
--max-epoch 10 \
|
48 |
+
--find-unused-parameters \
|
49 |
+
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
|
50 |
+
```
|
51 |
+
|
52 |
+
For each of the GLUE task, you will need to use following cmd-line arguments:
|
53 |
+
|
54 |
+
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
|
55 |
+
---|---|---|---|---|---|---|---|---
|
56 |
+
`--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1
|
57 |
+
`--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5
|
58 |
+
`bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32
|
59 |
+
`--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799
|
60 |
+
`--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107
|
61 |
+
|
62 |
+
For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`.
|
63 |
+
|
64 |
+
**Note:**
|
65 |
+
|
66 |
+
a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task.
|
67 |
+
|
68 |
+
b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`.
|
69 |
+
|
70 |
+
### Inference on GLUE task
|
71 |
+
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet:
|
72 |
+
|
73 |
+
```python
|
74 |
+
from fairseq.models.bart import BARTModel
|
75 |
+
|
76 |
+
bart = BARTModel.from_pretrained(
|
77 |
+
'checkpoints/',
|
78 |
+
checkpoint_file='checkpoint_best.pt',
|
79 |
+
data_name_or_path='RTE-bin'
|
80 |
+
)
|
81 |
+
|
82 |
+
label_fn = lambda label: bart.task.label_dictionary.string(
|
83 |
+
[label + bart.task.label_dictionary.nspecial]
|
84 |
+
)
|
85 |
+
ncorrect, nsamples = 0, 0
|
86 |
+
bart.cuda()
|
87 |
+
bart.eval()
|
88 |
+
with open('glue_data/RTE/dev.tsv') as fin:
|
89 |
+
fin.readline()
|
90 |
+
for index, line in enumerate(fin):
|
91 |
+
tokens = line.strip().split('\t')
|
92 |
+
sent1, sent2, target = tokens[1], tokens[2], tokens[3]
|
93 |
+
tokens = bart.encode(sent1, sent2)
|
94 |
+
prediction = bart.predict('sentence_classification_head', tokens).argmax().item()
|
95 |
+
prediction_label = label_fn(prediction)
|
96 |
+
ncorrect += int(prediction_label == target)
|
97 |
+
nsamples += 1
|
98 |
+
print('| Accuracy: ', float(ncorrect)/float(nsamples))
|
99 |
+
```
|
examples/bart/README.md
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
|
2 |
+
|
3 |
+
[https://arxiv.org/abs/1910.13461](https://arxiv.org/abs/1910.13461)
|
4 |
+
|
5 |
+
## Introduction
|
6 |
+
|
7 |
+
BART is sequence-to-sequence model trained with denoising as pretraining objective. We show that this pretraining objective is more generic and show that we can match [RoBERTa](../roberta) results on SQuAD and GLUE and gain state-of-the-art results on summarization (XSum, CNN dataset), long form generative question answering (ELI5) and dialog response genration (ConvAI2). See the associated paper for more details.
|
8 |
+
|
9 |
+
## Pre-trained models
|
10 |
+
|
11 |
+
Model | Description | # params | Download
|
12 |
+
---|---|---|---
|
13 |
+
`bart.base` | BART model with 6 encoder and decoder layers | 140M | [bart.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz)
|
14 |
+
`bart.large` | BART model with 12 encoder and decoder layers | 400M | [bart.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz)
|
15 |
+
`bart.large.mnli` | `bart.large` finetuned on `MNLI` | 400M | [bart.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz)
|
16 |
+
`bart.large.cnn` | `bart.large` finetuned on `CNN-DM` | 400M | [bart.large.cnn.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz)
|
17 |
+
`bart.large.xsum` | `bart.large` finetuned on `Xsum` | 400M | [bart.large.xsum.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz)
|
18 |
+
|
19 |
+
## Results
|
20 |
+
|
21 |
+
**[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)**
|
22 |
+
_(dev set, single model, single-task finetuning)_
|
23 |
+
|
24 |
+
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
|
25 |
+
---|---|---|---|---|---|---|---|---
|
26 |
+
`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
|
27 |
+
`bart.large` | 89.9 | 94.9 | 92.5 | 87.0 | 96.6 | 90.4 | 62.8 | 91.2
|
28 |
+
|
29 |
+
**[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)**
|
30 |
+
_(dev set, no additional data used)_
|
31 |
+
|
32 |
+
Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
|
33 |
+
---|---|---
|
34 |
+
`roberta.large` | 88.9/94.6 | 86.5/89.4
|
35 |
+
`bart.large` | 88.8/94.6 | 86.1/89.2
|
36 |
+
|
37 |
+
**[CNN/Daily Mail](http://nlpprogress.com/english/summarization.html)**
|
38 |
+
_(test set, no additional data used)_
|
39 |
+
|
40 |
+
Model | R1 | R2 | RL
|
41 |
+
---|---|---|---
|
42 |
+
`BERTSUMEXTABS` | 42.13 | 19.60 | 39.18
|
43 |
+
`bart.large` | 44.16 | 21.28 | 40.90
|
44 |
+
|
45 |
+
## Example usage
|
46 |
+
|
47 |
+
##### Load BART from torch.hub (PyTorch >= 1.1):
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.large')
|
51 |
+
bart.eval() # disable dropout (or leave in train mode to finetune)
|
52 |
+
```
|
53 |
+
|
54 |
+
##### Load BART (for PyTorch 1.0 or custom models):
|
55 |
+
```python
|
56 |
+
# Download bart.large model
|
57 |
+
wget https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz
|
58 |
+
tar -xzvf bart.large.tar.gz
|
59 |
+
|
60 |
+
# Load the model in fairseq
|
61 |
+
from fairseq.models.bart import BARTModel
|
62 |
+
bart = BARTModel.from_pretrained('/path/to/bart.large', checkpoint_file='model.pt')
|
63 |
+
bart.eval() # disable dropout (or leave in train mode to finetune)
|
64 |
+
```
|
65 |
+
|
66 |
+
##### Apply Byte-Pair Encoding (BPE) to input text:
|
67 |
+
```python
|
68 |
+
tokens = bart.encode('Hello world!')
|
69 |
+
assert tokens.tolist() == [0, 31414, 232, 328, 2]
|
70 |
+
bart.decode(tokens) # 'Hello world!'
|
71 |
+
```
|
72 |
+
|
73 |
+
##### Extract features from BART:
|
74 |
+
```python
|
75 |
+
# Extract the last layer's features
|
76 |
+
last_layer_features = bart.extract_features(tokens)
|
77 |
+
assert last_layer_features.size() == torch.Size([1, 5, 1024])
|
78 |
+
|
79 |
+
# Extract all layer's features from decoder (layer 0 is the embedding layer)
|
80 |
+
all_layers = bart.extract_features(tokens, return_all_hiddens=True)
|
81 |
+
assert len(all_layers) == 13
|
82 |
+
assert torch.all(all_layers[-1] == last_layer_features)
|
83 |
+
```
|
84 |
+
|
85 |
+
##### Use BART for sentence-pair classification tasks:
|
86 |
+
```python
|
87 |
+
# Download BART already finetuned for MNLI
|
88 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli')
|
89 |
+
bart.eval() # disable dropout for evaluation
|
90 |
+
|
91 |
+
# Encode a pair of sentences and make a prediction
|
92 |
+
tokens = bart.encode('BART is a seq2seq model.', 'BART is not sequence to sequence.')
|
93 |
+
bart.predict('mnli', tokens).argmax() # 0: contradiction
|
94 |
+
|
95 |
+
# Encode another pair of sentences
|
96 |
+
tokens = bart.encode('BART is denoising autoencoder.', 'BART is version of autoencoder.')
|
97 |
+
bart.predict('mnli', tokens).argmax() # 2: entailment
|
98 |
+
```
|
99 |
+
|
100 |
+
##### Register a new (randomly initialized) classification head:
|
101 |
+
```python
|
102 |
+
bart.register_classification_head('new_task', num_classes=3)
|
103 |
+
logprobs = bart.predict('new_task', tokens)
|
104 |
+
```
|
105 |
+
|
106 |
+
##### Batched prediction:
|
107 |
+
```python
|
108 |
+
import torch
|
109 |
+
from fairseq.data.data_utils import collate_tokens
|
110 |
+
|
111 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli')
|
112 |
+
bart.eval()
|
113 |
+
|
114 |
+
batch_of_pairs = [
|
115 |
+
['BART is a seq2seq model.', 'BART is not sequence to sequence.'],
|
116 |
+
['BART is denoising autoencoder.', 'BART is version of autoencoder.'],
|
117 |
+
]
|
118 |
+
|
119 |
+
batch = collate_tokens(
|
120 |
+
[bart.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
|
121 |
+
)
|
122 |
+
|
123 |
+
logprobs = bart.predict('mnli', batch)
|
124 |
+
print(logprobs.argmax(dim=1))
|
125 |
+
# tensor([0, 2])
|
126 |
+
```
|
127 |
+
|
128 |
+
##### Using the GPU:
|
129 |
+
```python
|
130 |
+
bart.cuda()
|
131 |
+
bart.predict('new_task', tokens)
|
132 |
+
```
|
133 |
+
|
134 |
+
#### Filling masks:
|
135 |
+
|
136 |
+
BART can be used to fill multiple `<mask>` tokens in the input.
|
137 |
+
```python
|
138 |
+
bart = torch.hub.load('pytorch/fairseq', 'bart.base')
|
139 |
+
bart.eval()
|
140 |
+
bart.fill_mask(['The cat <mask> on the <mask>.'], topk=3, beam=10)
|
141 |
+
# [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))]]
|
142 |
+
```
|
143 |
+
|
144 |
+
Note that by default we enforce the output length to match the input length.
|
145 |
+
This can be disabled by setting ``match_source_len=False``:
|
146 |
+
```
|
147 |
+
bart.fill_mask(['The cat <mask> on the <mask>.'], topk=3, beam=10, match_source_len=False)
|
148 |
+
# [[('The cat was on the ground.', tensor(-0.6185)), ('The cat was asleep on the couch.', tensor(-0.6276)), ('The cat was on the floor.', tensor(-0.6800))]]
|
149 |
+
```
|
150 |
+
|
151 |
+
Example code to fill masks for a batch of sentences using GPU
|
152 |
+
```
|
153 |
+
bart.cuda()
|
154 |
+
bart.fill_mask(['The cat <mask> on the <mask>.', 'The dog <mask> on the <mask>.'], topk=3, beam=10)
|
155 |
+
# [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))], [('The dog was on the ground.', tensor(-0.6190)), ('The dog lay on the ground.', tensor(-0.6711)),
|
156 |
+
('The dog was asleep on the couch', tensor(-0.6796))]]
|
157 |
+
```
|
158 |
+
|
159 |
+
#### Evaluating the `bart.large.mnli` model:
|
160 |
+
|
161 |
+
Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
|
162 |
+
```python
|
163 |
+
label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
|
164 |
+
ncorrect, nsamples = 0, 0
|
165 |
+
bart.cuda()
|
166 |
+
bart.eval()
|
167 |
+
with open('glue_data/MNLI/dev_matched.tsv') as fin:
|
168 |
+
fin.readline()
|
169 |
+
for index, line in enumerate(fin):
|
170 |
+
tokens = line.strip().split('\t')
|
171 |
+
sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
|
172 |
+
tokens = bart.encode(sent1, sent2)
|
173 |
+
prediction = bart.predict('mnli', tokens).argmax().item()
|
174 |
+
prediction_label = label_map[prediction]
|
175 |
+
ncorrect += int(prediction_label == target)
|
176 |
+
nsamples += 1
|
177 |
+
print('| Accuracy: ', float(ncorrect)/float(nsamples))
|
178 |
+
# Expected output: 0.9010
|
179 |
+
```
|
180 |
+
|
181 |
+
#### Evaluating the `bart.large.cnn` model:
|
182 |
+
- Follow instructions [here](https://github.com/abisee/cnn-dailymail) to download and process into data-files such that `test.source` and `test.target` has one line for each non-tokenized sample.
|
183 |
+
- For simpler preprocessing, you can also `wget https://cdn-datasets.huggingface.co/summarization/cnn_dm_v2.tgz`, although there is no guarantee of identical scores
|
184 |
+
- `huggingface/transformers` has a simpler interface that supports [single-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_eval.py) and [multi-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_distributed_eval.py) beam search.
|
185 |
+
In `huggingface/transformers`, the BART models' paths are `facebook/bart-large-cnn` and `facebook/bart-large-xsum`.
|
186 |
+
|
187 |
+
In `fairseq`, summaries can be generated using:
|
188 |
+
|
189 |
+
```bash
|
190 |
+
cp data-bin/cnn_dm/dict.source.txt checkpoints/
|
191 |
+
python examples/bart/summarize.py \
|
192 |
+
--model-dir pytorch/fairseq \
|
193 |
+
--model-file bart.large.cnn \
|
194 |
+
--src cnn_dm/test.source \
|
195 |
+
--out cnn_dm/test.hypo
|
196 |
+
```
|
197 |
+
|
198 |
+
For calculating rouge, install `files2rouge` from [here](https://github.com/pltrdy/files2rouge).
|
199 |
+
|
200 |
+
```bash
|
201 |
+
export CLASSPATH=/path/to/stanford-corenlp-full-2016-10-31/stanford-corenlp-3.7.0.jar
|
202 |
+
|
203 |
+
# Tokenize hypothesis and target files.
|
204 |
+
cat test.hypo | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.tokenized
|
205 |
+
cat test.target | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.target
|
206 |
+
files2rouge test.hypo.tokenized test.hypo.target
|
207 |
+
# Expected output: (ROUGE-2 Average_F: 0.21238)
|
208 |
+
```
|
209 |
+
|
210 |
+
|
211 |
+
## Finetuning
|
212 |
+
|
213 |
+
- [Finetuning on GLUE](README.glue.md)
|
214 |
+
- [Finetuning on CNN-DM](README.summarization.md)
|
215 |
+
|
216 |
+
## Citation
|
217 |
+
|
218 |
+
```bibtex
|
219 |
+
@article{lewis2019bart,
|
220 |
+
title = {BART: Denoising Sequence-to-Sequence Pre-training for Natural
|
221 |
+
Language Generation, Translation, and Comprehension},
|
222 |
+
author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and
|
223 |
+
Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov
|
224 |
+
and Luke Zettlemoyer },
|
225 |
+
journal={arXiv preprint arXiv:1910.13461},
|
226 |
+
year = {2019},
|
227 |
+
}
|
228 |
+
```
|
examples/bart/README.summarization.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fine-tuning BART on CNN-Dailymail summarization task
|
2 |
+
|
3 |
+
### 1) Download the CNN and Daily Mail data and preprocess it into data files with non-tokenized cased samples.
|
4 |
+
|
5 |
+
Follow the instructions [here](https://github.com/abisee/cnn-dailymail) to download the original CNN and Daily Mail datasets. To preprocess the data, refer to the pointers in [this issue](https://github.com/pytorch/fairseq/issues/1391) or check out the code [here](https://github.com/artmatsak/cnn-dailymail).
|
6 |
+
|
7 |
+
Follow the instructions [here](https://github.com/EdinburghNLP/XSum) to download the original Extreme Summarization datasets, or check out the code [here](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset), Please keep the raw dataset and make sure no tokenization nor BPE on the dataset.
|
8 |
+
|
9 |
+
### 2) BPE preprocess:
|
10 |
+
|
11 |
+
```bash
|
12 |
+
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
|
13 |
+
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
|
14 |
+
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
|
15 |
+
|
16 |
+
TASK=cnn_dm
|
17 |
+
for SPLIT in train val
|
18 |
+
do
|
19 |
+
for LANG in source target
|
20 |
+
do
|
21 |
+
python -m examples.roberta.multiprocessing_bpe_encoder \
|
22 |
+
--encoder-json encoder.json \
|
23 |
+
--vocab-bpe vocab.bpe \
|
24 |
+
--inputs "$TASK/$SPLIT.$LANG" \
|
25 |
+
--outputs "$TASK/$SPLIT.bpe.$LANG" \
|
26 |
+
--workers 60 \
|
27 |
+
--keep-empty;
|
28 |
+
done
|
29 |
+
done
|
30 |
+
```
|
31 |
+
|
32 |
+
### 3) Binarize dataset:
|
33 |
+
```bash
|
34 |
+
fairseq-preprocess \
|
35 |
+
--source-lang "source" \
|
36 |
+
--target-lang "target" \
|
37 |
+
--trainpref "${TASK}/train.bpe" \
|
38 |
+
--validpref "${TASK}/val.bpe" \
|
39 |
+
--destdir "${TASK}-bin/" \
|
40 |
+
--workers 60 \
|
41 |
+
--srcdict dict.txt \
|
42 |
+
--tgtdict dict.txt;
|
43 |
+
```
|
44 |
+
|
45 |
+
### 4) Fine-tuning on CNN-DM summarization task:
|
46 |
+
Example fine-tuning CNN-DM
|
47 |
+
```bash
|
48 |
+
TOTAL_NUM_UPDATES=20000
|
49 |
+
WARMUP_UPDATES=500
|
50 |
+
LR=3e-05
|
51 |
+
MAX_TOKENS=2048
|
52 |
+
UPDATE_FREQ=4
|
53 |
+
BART_PATH=/path/to/bart/model.pt
|
54 |
+
|
55 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 fairseq-train cnn_dm-bin \
|
56 |
+
--restore-file $BART_PATH \
|
57 |
+
--max-tokens $MAX_TOKENS \
|
58 |
+
--task translation \
|
59 |
+
--source-lang source --target-lang target \
|
60 |
+
--truncate-source \
|
61 |
+
--layernorm-embedding \
|
62 |
+
--share-all-embeddings \
|
63 |
+
--share-decoder-input-output-embed \
|
64 |
+
--reset-optimizer --reset-dataloader --reset-meters \
|
65 |
+
--required-batch-size-multiple 1 \
|
66 |
+
--arch bart_large \
|
67 |
+
--criterion label_smoothed_cross_entropy \
|
68 |
+
--label-smoothing 0.1 \
|
69 |
+
--dropout 0.1 --attention-dropout 0.1 \
|
70 |
+
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \
|
71 |
+
--clip-norm 0.1 \
|
72 |
+
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
|
73 |
+
--fp16 --update-freq $UPDATE_FREQ \
|
74 |
+
--skip-invalid-size-inputs-valid-test \
|
75 |
+
--find-unused-parameters;
|
76 |
+
```
|
77 |
+
Above is expected to run on `1` node with `8 32gb-V100`.
|
78 |
+
Expected training time is about `5 hours`. Training time can be reduced with distributed training on `4` nodes and `--update-freq 1`.
|
79 |
+
|
80 |
+
Use TOTAL_NUM_UPDATES=15000 UPDATE_FREQ=2 for Xsum task
|
81 |
+
|
82 |
+
### Inference for CNN-DM test data using above trained checkpoint.
|
83 |
+
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using `eval_cnn.py`, for example
|
84 |
+
|
85 |
+
```bash
|
86 |
+
cp data-bin/cnn_dm/dict.source.txt checkpoints/
|
87 |
+
python examples/bart/summarize.py \
|
88 |
+
--model-dir checkpoints \
|
89 |
+
--model-file checkpoint_best.pt \
|
90 |
+
--src cnn_dm/test.source \
|
91 |
+
--out cnn_dm/test.hypo
|
92 |
+
```
|
93 |
+
For XSUM, which uses beam=6, lenpen=1.0, max_len_b=60, min_len=10:
|
94 |
+
```bash
|
95 |
+
cp data-bin/cnn_dm/dict.source.txt checkpoints/
|
96 |
+
python examples/bart/summarize.py \
|
97 |
+
--model-dir checkpoints \
|
98 |
+
--model-file checkpoint_best.pt \
|
99 |
+
--src cnn_dm/test.source \
|
100 |
+
--out cnn_dm/test.hypo \
|
101 |
+
--xsum-kwargs
|
102 |
+
```
|
examples/bart/summarize.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from fairseq.models.bart import BARTModel
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
XSUM_KWARGS = dict(beam=6, lenpen=1.0, max_len_b=60, min_len=10, no_repeat_ngram_size=3)
|
11 |
+
CNN_KWARGS = dict(beam=4, lenpen=2.0, max_len_b=140, min_len=55, no_repeat_ngram_size=3)
|
12 |
+
|
13 |
+
|
14 |
+
@torch.no_grad()
|
15 |
+
def generate(bart, infile, outfile="bart_hypo.txt", bsz=32, n_obs=None, **eval_kwargs):
|
16 |
+
count = 1
|
17 |
+
|
18 |
+
# if n_obs is not None: bsz = min(bsz, n_obs)
|
19 |
+
|
20 |
+
with open(infile) as source, open(outfile, "w") as fout:
|
21 |
+
sline = source.readline().strip()
|
22 |
+
slines = [sline]
|
23 |
+
for sline in source:
|
24 |
+
if n_obs is not None and count > n_obs:
|
25 |
+
break
|
26 |
+
if count % bsz == 0:
|
27 |
+
hypotheses_batch = bart.sample(slines, **eval_kwargs)
|
28 |
+
for hypothesis in hypotheses_batch:
|
29 |
+
fout.write(hypothesis + "\n")
|
30 |
+
fout.flush()
|
31 |
+
slines = []
|
32 |
+
|
33 |
+
slines.append(sline.strip())
|
34 |
+
count += 1
|
35 |
+
|
36 |
+
if slines != []:
|
37 |
+
hypotheses_batch = bart.sample(slines, **eval_kwargs)
|
38 |
+
for hypothesis in hypotheses_batch:
|
39 |
+
fout.write(hypothesis + "\n")
|
40 |
+
fout.flush()
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
"""
|
45 |
+
Usage::
|
46 |
+
|
47 |
+
python examples/bart/summarize.py \
|
48 |
+
--model-dir $HOME/bart.large.cnn \
|
49 |
+
--model-file model.pt \
|
50 |
+
--src $HOME/data-bin/cnn_dm/test.source
|
51 |
+
"""
|
52 |
+
parser = argparse.ArgumentParser()
|
53 |
+
parser.add_argument(
|
54 |
+
"--model-dir",
|
55 |
+
required=True,
|
56 |
+
type=str,
|
57 |
+
default="bart.large.cnn/",
|
58 |
+
help="path containing model file and src_dict.txt",
|
59 |
+
)
|
60 |
+
parser.add_argument(
|
61 |
+
"--model-file",
|
62 |
+
default="checkpoint_best.pt",
|
63 |
+
help="where in model_dir are weights saved",
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--src", default="test.source", help="text to summarize", type=str
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--out", default="test.hypo", help="where to save summaries", type=str
|
70 |
+
)
|
71 |
+
parser.add_argument("--bsz", default=32, help="where to save summaries", type=int)
|
72 |
+
parser.add_argument(
|
73 |
+
"--n", default=None, help="how many examples to summarize", type=int
|
74 |
+
)
|
75 |
+
parser.add_argument(
|
76 |
+
"--xsum-kwargs",
|
77 |
+
action="store_true",
|
78 |
+
default=False,
|
79 |
+
help="if true use XSUM_KWARGS else CNN_KWARGS",
|
80 |
+
)
|
81 |
+
args = parser.parse_args()
|
82 |
+
eval_kwargs = XSUM_KWARGS if args.xsum_kwargs else CNN_KWARGS
|
83 |
+
if args.model_dir == "pytorch/fairseq":
|
84 |
+
bart = torch.hub.load("pytorch/fairseq", args.model_file)
|
85 |
+
else:
|
86 |
+
bart = BARTModel.from_pretrained(
|
87 |
+
args.model_dir,
|
88 |
+
checkpoint_file=args.model_file,
|
89 |
+
data_name_or_path=args.model_dir,
|
90 |
+
)
|
91 |
+
bart = bart.eval()
|
92 |
+
if torch.cuda.is_available():
|
93 |
+
bart = bart.cuda().half()
|
94 |
+
generate(
|
95 |
+
bart, args.src, bsz=args.bsz, n_obs=args.n, outfile=args.out, **eval_kwargs
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|
examples/byte_level_bpe/README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Neural Machine Translation with Byte-Level Subwords
|
2 |
+
|
3 |
+
https://arxiv.org/abs/1909.03341
|
4 |
+
|
5 |
+
We provide an implementation of byte-level byte-pair encoding (BBPE), taking IWSLT 2017 Fr-En translation as
|
6 |
+
example.
|
7 |
+
|
8 |
+
## Data
|
9 |
+
Get data and generate fairseq binary dataset:
|
10 |
+
```bash
|
11 |
+
bash ./get_data.sh
|
12 |
+
```
|
13 |
+
|
14 |
+
## Model Training
|
15 |
+
Train Transformer model with Bi-GRU embedding contextualization (implemented in `gru_transformer.py`):
|
16 |
+
```bash
|
17 |
+
# VOCAB=bytes
|
18 |
+
# VOCAB=chars
|
19 |
+
VOCAB=bbpe2048
|
20 |
+
# VOCAB=bpe2048
|
21 |
+
# VOCAB=bbpe4096
|
22 |
+
# VOCAB=bpe4096
|
23 |
+
# VOCAB=bpe16384
|
24 |
+
```
|
25 |
+
```bash
|
26 |
+
fairseq-train "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
|
27 |
+
--arch gru_transformer --encoder-layers 2 --decoder-layers 2 --dropout 0.3 --share-all-embeddings \
|
28 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' \
|
29 |
+
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
30 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
31 |
+
--log-format 'simple' --log-interval 100 --save-dir "checkpoints/${VOCAB}" \
|
32 |
+
--batch-size 100 --max-update 100000 --update-freq 2
|
33 |
+
```
|
34 |
+
|
35 |
+
## Generation
|
36 |
+
`fairseq-generate` requires bytes (BBPE) decoder to convert byte-level representation back to characters:
|
37 |
+
```bash
|
38 |
+
# BPE=--bpe bytes
|
39 |
+
# BPE=--bpe characters
|
40 |
+
BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe2048.model
|
41 |
+
# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe2048.model
|
42 |
+
# BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe4096.model
|
43 |
+
# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe4096.model
|
44 |
+
# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe16384.model
|
45 |
+
```
|
46 |
+
|
47 |
+
```bash
|
48 |
+
fairseq-generate "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
|
49 |
+
--source-lang fr --gen-subset test --sacrebleu --path "checkpoints/${VOCAB}/checkpoint_last.pt" \
|
50 |
+
--tokenizer moses --moses-target-lang en ${BPE}
|
51 |
+
```
|
52 |
+
When using `fairseq-interactive`, bytes (BBPE) encoder/decoder is required to tokenize input data and detokenize model predictions:
|
53 |
+
```bash
|
54 |
+
fairseq-interactive "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
|
55 |
+
--path "checkpoints/${VOCAB}/checkpoint_last.pt" --input data/test.fr --tokenizer moses --moses-source-lang fr \
|
56 |
+
--moses-target-lang en ${BPE} --buffer-size 1000 --max-tokens 10000
|
57 |
+
```
|
58 |
+
|
59 |
+
## Results
|
60 |
+
| Vocabulary | Model | BLEU |
|
61 |
+
|:-------------:|:-------------:|:-------------:|
|
62 |
+
| Joint BPE 16k ([Kudo, 2018](https://arxiv.org/abs/1804.10959)) | 512d LSTM 2+2 | 33.81 |
|
63 |
+
| Joint BPE 16k | Transformer base 2+2 (w/ GRU) | 36.64 (36.72) |
|
64 |
+
| Joint BPE 4k | Transformer base 2+2 (w/ GRU) | 35.49 (36.10) |
|
65 |
+
| Joint BBPE 4k | Transformer base 2+2 (w/ GRU) | 35.61 (35.82) |
|
66 |
+
| Joint BPE 2k | Transformer base 2+2 (w/ GRU) | 34.87 (36.13) |
|
67 |
+
| Joint BBPE 2k | Transformer base 2+2 (w/ GRU) | 34.98 (35.43) |
|
68 |
+
| Characters | Transformer base 2+2 (w/ GRU) | 31.78 (33.30) |
|
69 |
+
| Bytes | Transformer base 2+2 (w/ GRU) | 31.57 (33.62) |
|
70 |
+
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
```
|
74 |
+
@misc{wang2019neural,
|
75 |
+
title={Neural Machine Translation with Byte-Level Subwords},
|
76 |
+
author={Changhan Wang and Kyunghyun Cho and Jiatao Gu},
|
77 |
+
year={2019},
|
78 |
+
eprint={1909.03341},
|
79 |
+
archivePrefix={arXiv},
|
80 |
+
primaryClass={cs.CL}
|
81 |
+
}
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
## Contact
|
86 |
+
Changhan Wang ([[email protected]](mailto:[email protected])),
|
87 |
+
Kyunghyun Cho ([[email protected]](mailto:[email protected])),
|
88 |
+
Jiatao Gu ([[email protected]](mailto:[email protected]))
|