# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional import torch from omegaconf import II from .dummy_dataset import DummyDataset from fairseq.data import Dictionary from fairseq.dataclass import FairseqDataclass from fairseq.tasks import FairseqTask, register_task logger = logging.getLogger(__name__) @dataclass class DummyMaskedLMConfig(FairseqDataclass): dict_size: int = 49996 dataset_size: int = 100000 tokens_per_sample: int = field( default=512, metadata={ "help": "max number of total tokens over all" " segments per sample for BERT dataset" }, ) batch_size: Optional[int] = II("dataset.batch_size") max_tokens: Optional[int] = II("dataset.max_tokens") max_target_positions: int = II("task.tokens_per_sample") @register_task("dummy_masked_lm", dataclass=DummyMaskedLMConfig) class DummyMaskedLMTask(FairseqTask): def __init__(self, cfg: DummyMaskedLMConfig): super().__init__(cfg) self.dictionary = Dictionary() for i in range(cfg.dict_size): self.dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(self.dictionary))) # add mask token self.mask_idx = self.dictionary.add_symbol("") self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8 mask_idx = 0 pad_idx = 1 seq = torch.arange(cfg.tokens_per_sample) + pad_idx + 1 mask = torch.arange(2, cfg.tokens_per_sample, 7) # ~15% src = seq.clone() src[mask] = mask_idx tgt = torch.full_like(seq, pad_idx) tgt[mask] = seq[mask] self.dummy_src = src self.dummy_tgt = tgt def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if self.cfg.batch_size is not None: bsz = self.cfg.batch_size else: bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.cfg.tokens_per_sample, dtype=torch.long ), }, "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), "nsentences": bsz, "ntokens": bsz * self.cfg.tokens_per_sample, }, num_items=self.cfg.dataset_size, item_size=self.cfg.tokens_per_sample, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary