# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from fairseq import metrics, utils from fairseq.criterions import register_criterion from .label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterion @register_criterion("label_smoothed_cross_entropy_with_alignment") class LabelSmoothedCrossEntropyCriterionWithAlignment( LabelSmoothedCrossEntropyCriterion ): def __init__(self, task, sentence_avg, label_smoothing, alignment_lambda): super().__init__(task, sentence_avg, label_smoothing) self.alignment_lambda = alignment_lambda @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" LabelSmoothedCrossEntropyCriterion.add_args(parser) parser.add_argument( "--alignment-lambda", default=0.05, type=float, metavar="D", help="weight for the alignment loss", ) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "nll_loss": utils.item(nll_loss.data) if reduce else nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } alignment_loss = None # Compute alignment loss only for training set and non dummy batches. if "alignments" in sample and sample["alignments"] is not None: alignment_loss = self.compute_alignment_loss(sample, net_output) if alignment_loss is not None: logging_output["alignment_loss"] = utils.item(alignment_loss.data) loss += self.alignment_lambda * alignment_loss return loss, sample_size, logging_output def compute_alignment_loss(self, sample, net_output): attn_prob = net_output[1]["attn"][0] bsz, tgt_sz, src_sz = attn_prob.shape attn = attn_prob.view(bsz * tgt_sz, src_sz) align = sample["alignments"] align_weights = sample["align_weights"].float() if len(align) > 0: # Alignment loss computation. align (shape [:, 2]) contains the src-tgt index pairs corresponding to # the alignments. align_weights (shape [:]) contains the 1 / frequency of a tgt index for normalizing. loss = -( (attn[align[:, 1][:, None], align[:, 0][:, None]]).log() * align_weights[:, None] ).sum() else: return None return loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) nll_loss_sum = utils.item( sum(log.get("nll_loss", 0) for log in logging_outputs) ) alignment_loss_sum = utils.item( sum(log.get("alignment_loss", 0) for log in logging_outputs) ) ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs) ) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_scalar( "alignment_loss", alignment_loss_sum / sample_size / math.log(2), sample_size, round=3, ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True