# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import metrics, modules, utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("masked_lm") class MaskedLmLoss(FairseqCriterion): """ Implementation for the loss used in masked language model (MLM) training. """ def __init__(self, task, tpu=False): super().__init__(task) self.tpu = tpu def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ masked_tokens = sample["target"].ne(self.padding_idx) sample_size = masked_tokens.int().sum() # Rare: when all tokens are masked, project all tokens. # We use torch.where to avoid device-to-host transfers, # except on CPU where torch.where is not well supported # (see github.com/pytorch/pytorch/issues/26247). if self.tpu: masked_tokens = None # always project all tokens on TPU elif masked_tokens.device == torch.device("cpu"): if not masked_tokens.any(): masked_tokens = None else: masked_tokens = torch.where( masked_tokens.any(), masked_tokens, masked_tokens.new([True]), ) logits = model(**sample["net_input"], masked_tokens=masked_tokens)[0] targets = model.get_targets(sample, [logits]) if masked_tokens is not None: targets = targets[masked_tokens] loss = modules.cross_entropy( logits.view(-1, logits.size(-1)), targets.view(-1), reduction="sum", ignore_index=self.padding_idx, ) logging_output = { "loss": loss if self.tpu else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True