Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 3.
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 3.31.0
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_dialogpt"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import AutoModelForCausalLM, AutoTokenizer\n", "import torch\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "model = AutoModelForCausalLM.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "\n", "def user(message, history):\n", " return \"\", history + [[message, None]]\n", "\n", "\n", "
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_dialogpt"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import AutoModelForCausalLM, AutoTokenizer\n", "import torch\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "model = AutoModelForCausalLM.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "\n", "\n", "def user(message, history):\n", " return \"\", history + [[message, None]]\n", "\n", "\n", "def bot(history):\n", " user_message = history[-1][0]\n", " new_user_input_ids = tokenizer.encode(\n", " user_message + tokenizer.eos_token, return_tensors=\"pt\"\n", " )\n", "\n", " # append the new user input tokens to the chat history\n", " bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)\n", "\n", " # generate a response\n", " response = model.generate(\n", " bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id\n", " ).tolist()\n", "\n", " # convert the tokens to text, and then split the responses into lines\n", " response = tokenizer.decode(response[0]).split(\"<|endoftext|>\")\n", " response = [\n", " (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)\n", " ] # convert to tuples of list\n", " history[-1] = response[0]\n", " return history\n", "\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot()\n", " msg = gr.Textbox()\n", " clear = gr.Button(\"Clear\")\n", "\n", " msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " clear.click(lambda: None, None, chatbot, queue=False)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -5,33 +5,34 @@ import torch
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
6 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
7 |
|
|
|
8 |
def user(message, history):
|
9 |
return "", history + [[message, None]]
|
10 |
|
11 |
|
12 |
-
# bot_message = random.choice(["Yes", "No"])
|
13 |
-
# history[-1][1] = bot_message
|
14 |
-
# time.sleep(1)
|
15 |
-
# return history
|
16 |
-
|
17 |
-
# def predict(input, history=[]):
|
18 |
-
# # tokenize the new input sentence
|
19 |
-
|
20 |
def bot(history):
|
21 |
user_message = history[-1][0]
|
22 |
-
new_user_input_ids = tokenizer.encode(
|
|
|
|
|
23 |
|
24 |
# append the new user input tokens to the chat history
|
25 |
-
bot_input_ids = torch.cat([torch.LongTensor(
|
26 |
|
27 |
-
# generate a response
|
28 |
-
|
|
|
|
|
29 |
|
30 |
# convert the tokens to text, and then split the responses into lines
|
31 |
-
response = tokenizer.decode(
|
32 |
-
response = [
|
|
|
|
|
|
|
33 |
return history
|
34 |
|
|
|
35 |
with gr.Blocks() as demo:
|
36 |
chatbot = gr.Chatbot()
|
37 |
msg = gr.Textbox()
|
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
6 |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
7 |
|
8 |
+
|
9 |
def user(message, history):
|
10 |
return "", history + [[message, None]]
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def bot(history):
|
14 |
user_message = history[-1][0]
|
15 |
+
new_user_input_ids = tokenizer.encode(
|
16 |
+
user_message + tokenizer.eos_token, return_tensors="pt"
|
17 |
+
)
|
18 |
|
19 |
# append the new user input tokens to the chat history
|
20 |
+
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)
|
21 |
|
22 |
+
# generate a response
|
23 |
+
response = model.generate(
|
24 |
+
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id
|
25 |
+
).tolist()
|
26 |
|
27 |
# convert the tokens to text, and then split the responses into lines
|
28 |
+
response = tokenizer.decode(response[0]).split("<|endoftext|>")
|
29 |
+
response = [
|
30 |
+
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
31 |
+
] # convert to tuples of list
|
32 |
+
history[-1] = response[0]
|
33 |
return history
|
34 |
|
35 |
+
|
36 |
with gr.Blocks() as demo:
|
37 |
chatbot = gr.Chatbot()
|
38 |
msg = gr.Textbox()
|