Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +1 -3
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
3 |
transformers
|
4 |
torch
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
|
3 |
transformers
|
4 |
torch
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: english_translator"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio transformers torch"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "from transformers import pipeline\n", "\n", "pipe = pipeline(\"translation\", model=\"t5-base\")\n", "\n", "
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: english_translator"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio transformers torch"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "from transformers import pipeline\n", "\n", "pipe = pipeline(\"translation\", model=\"t5-base\")\n", "\n", "def translate(text):\n", " return pipe(text)[0][\"translation_text\"] # type: ignore\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " english = gr.Textbox(label=\"English text\")\n", " translate_btn = gr.Button(value=\"Translate\")\n", " with gr.Column():\n", " german = gr.Textbox(label=\"German Text\")\n", "\n", " translate_btn.click(translate, inputs=english, outputs=german, api_name=\"translate-to-german\")\n", " examples = gr.Examples(examples=[\"I went to the supermarket yesterday.\", \"Helen is a good swimmer.\"],\n", " inputs=[english])\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -4,11 +4,9 @@ from transformers import pipeline
|
|
4 |
|
5 |
pipe = pipeline("translation", model="t5-base")
|
6 |
|
7 |
-
|
8 |
def translate(text):
|
9 |
return pipe(text)[0]["translation_text"] # type: ignore
|
10 |
|
11 |
-
|
12 |
with gr.Blocks() as demo:
|
13 |
with gr.Row():
|
14 |
with gr.Column():
|
@@ -22,4 +20,4 @@ with gr.Blocks() as demo:
|
|
22 |
inputs=[english])
|
23 |
|
24 |
if __name__ == "__main__":
|
25 |
-
demo.launch()
|
|
|
4 |
|
5 |
pipe = pipeline("translation", model="t5-base")
|
6 |
|
|
|
7 |
def translate(text):
|
8 |
return pipe(text)[0]["translation_text"] # type: ignore
|
9 |
|
|
|
10 |
with gr.Blocks() as demo:
|
11 |
with gr.Row():
|
12 |
with gr.Column():
|
|
|
20 |
inputs=[english])
|
21 |
|
22 |
if __name__ == "__main__":
|
23 |
+
demo.launch()
|