File size: 24,028 Bytes
2776201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.

"""Full definition of a decoder-only transformer-based language model, all of it in this single file.

Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
"""

import math
from typing import Any, Optional, Tuple

import torch
import torch.nn as nn
from typing_extensions import Self
from litgpt.config import Config


class GPT(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        assert config.padded_vocab_size is not None
        self.config = config
        if self.config.asr_adapter == "mlp":
            print("Using MLP adapter for ASR feature")
            self.whisper_adapter = nn.Linear(config.whisper_adapter_dim, config.n_embd)
        elif self.config.asr_adapter == "llamamlp":
            print("using LLAMA MLP adapter for ASR feature")
            self.whisper_adapter = whisperMLP(config=config)
        else:
            raise ValueError("asr_adapter should be mlp or llamamlp")
        self.lm_head = nn.Linear(
            config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias
        )
        if config.post_adapter:
            self.transformer = nn.ModuleDict(
                dict(
                    wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                    h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                    post_adapter=nn.ModuleList(
                        Block(config) for _ in range(config.post_adapter_layers)
                    ),
                    ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
                    post_adapter_audio_ln=config.norm_class(
                        config.n_embd, eps=config.norm_eps
                    ),
                    post_adapter_audio_lm_head=nn.Linear(
                        config.n_embd, config.cat_audio_vocab_size, bias=config.lm_head_bias
                    ),
                )
            )
        else:
            self.transformer = nn.ModuleDict(
                dict(
                    wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                    h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                    ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
                )
            )
        self.max_seq_length = self.config.block_size
        self.mask_cache: Optional[torch.Tensor] = None
        if config.tie_word_embeddings:
            self.lm_head.weight = self.transformer.wte.weight

    @property
    def max_seq_length(self) -> int:
        return self._max_seq_length

    @max_seq_length.setter
    def max_seq_length(self, value: int) -> None:
        """
        When doing inference, the sequences used might be shorter than the model's context length.
        This allows setting a smaller number to avoid allocating unused memory
        """
        if value > self.config.block_size:
            raise ValueError(
                f"Cannot attend to {value}, block size is only {self.config.block_size}"
            )
        self._max_seq_length = value
        if not hasattr(self, "cos"):
            # first call
            cos, sin = self.rope_cache()
            self.register_buffer("cos", cos, persistent=False)
            self.register_buffer("sin", sin, persistent=False)
        # override
        elif value != self.cos.size(0):
            self.cos, self.sin = self.rope_cache(device=self.cos.device)
        # the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know
        # if the kv cache is expected

    def reset_parameters(self) -> None:
        # Trigger resetting the rope-cache
        self.cos, self.sin = self.rope_cache(device=self.cos.device)

    def _init_weights(self, module: nn.Module) -> None:
        """Meant to be used with `gpt.apply(gpt._init_weights)`."""
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def concat_whisper_feat(self, audio_feature, input_ids, T, task):
        for j in range(len(T)):
            if task[j] != "T1T2" and task[j] != "T1A2":
                for i in range(7):
                    input_ids[i][j, 1 : T[j] + 1, :] = audio_feature[j][: T[j]].clone()
            else:
                continue
        return input_ids

    def forward(
        self,
        audio_features: torch.Tensor,
        input_ids: torch.Tensor,
        input_pos: Optional[torch.Tensor] = None,
        whisper_lens: Optional[list] = None,
        task: Optional[str] = None,
    ) -> torch.Tensor:

        show = False
        T = input_ids[0].size(1)
        if self.max_seq_length < T:
            raise ValueError(
                f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}."
            )

        if input_pos is not None:  # use the kv cache
            cos = self.cos.index_select(0, input_pos)
            sin = self.sin.index_select(0, input_pos)
            if self.mask_cache is None:
                raise TypeError("You need to call `gpt.set_kv_cache()`")
            mask = self.mask_cache.index_select(2, input_pos)
        else:
            cos = self.cos[:T]
            sin = self.sin[:T]
            mask = None

        if audio_features is not None:
            # get whisper feature
            x_a = self.whisper_adapter(audio_features)
            # get input_ids embedding
            x0, x1, x2, x3, x4, x5, x6, x7 = input_ids

            x0 = self.transformer.wte(x0)
            x1 = self.transformer.wte(x1)
            x2 = self.transformer.wte(x2)
            x3 = self.transformer.wte(x3)
            x4 = self.transformer.wte(x4)
            x5 = self.transformer.wte(x5)
            x6 = self.transformer.wte(x6)
            x7 = self.transformer.wte(x7)

            # concat whisper feature
            input_emb = self.concat_whisper_feat(
                x_a, [x0, x1, x2, x3, x4, x5, x6, x7], whisper_lens, task
            )
            x0, x1, x2, x3, x4, x5, x6, x7 = input_emb

        else:
            x0, x1, x2, x3, x4, x5, x6, x7 = input_ids

            x0 = self.transformer.wte(x0)
            x1 = self.transformer.wte(x1)
            x2 = self.transformer.wte(x2)
            x3 = self.transformer.wte(x3)
            x4 = self.transformer.wte(x4)
            x5 = self.transformer.wte(x5)
            x6 = self.transformer.wte(x6)
            x7 = self.transformer.wte(x7)

        x = (x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7) / 8

        if self.config.scale_embeddings:
            x = x * (self.config.n_embd**0.5)

        for block in self.transformer.h:
            x = block(x, cos, sin, mask, input_pos)


        text_vocab_size = self.config.text_vocab_size
        audio_vocab_size = self.config.audio_vocab_size

        x_ori = x
        x_ori = self.transformer.ln_f(x_ori)
        x_ori = self.lm_head(x_ori)  # (b, t, vocab_size)
        xt = x_ori[..., :text_vocab_size]

        if self.config.post_adapter:
            for block in self.transformer.post_adapter:
                x = block(x, cos, sin, mask, input_pos)
            x = self.transformer.post_adapter_audio_ln(x)
            x = self.transformer.post_adapter_audio_lm_head(x)  # (b, t, vocab_size)
            xa = []
            for i in range(7):
                xa.append(x[..., audio_vocab_size * i : audio_vocab_size * (i + 1)])
        else:
            xa = []
            for i in range(7):
                xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)])

        return xa, xt

    @classmethod
    def from_name(cls, name: str, **kwargs: Any) -> Self:
        return cls(Config.from_name(name, **kwargs))

    def rope_cache(
        self, device: Optional[torch.device] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        return build_rope_cache(
            seq_len=self.max_seq_length,
            n_elem=self.config.rope_n_elem,
            device=device,
            condense_ratio=self.config.rope_condense_ratio,
            base=self.config.rope_base,
        )

    def set_kv_cache(
        self,
        batch_size: int,
        rope_cache_length: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        if rope_cache_length is None:
            rope_cache_length = self.cos.size(-1)
        max_seq_length = self.max_seq_length

        # initialize the kv cache for all blocks
        for block in self.transformer.h:
            block.attn.kv_cache = block.attn.build_kv_cache(
                batch_size, max_seq_length, rope_cache_length, device, dtype
            )
        if self.config.post_adapter:
            for block in self.transformer.post_adapter:
                block.attn.kv_cache = block.attn.build_kv_cache(
                    batch_size, max_seq_length, rope_cache_length, device, dtype
                )

        if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
            # passing `attn_mask` to SDPA disables the flash implementation. since we only need the mask
            # for the kv-cache support (only during inference), we only create it in that situation
            self.mask_cache = build_mask_cache(max_seq_length, device)

    def clear_kv_cache(self) -> None:
        self.mask_cache = None
        for block in self.transformer.h:
            block.attn.kv_cache = None


class Block(nn.Module):

    def __init__(self, config: Config) -> None:
        super().__init__()
        if not config.parallel_residual and config.shared_attention_norm:
            raise NotImplementedError(
                "No checkpoint amongst the ones we support uses this configuration"
                " (non-parallel residual and shared attention norm)."
            )

        self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config)
        self.norm_2 = (
            None
            if config.shared_attention_norm
            else config.norm_class(config.n_embd, eps=config.norm_eps)
        )
        self.mlp = config.mlp_class(config)

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Non-parallel residual       Parallel residual
           β”Œβ”€ x                     β”Œβ”€ x ────────────┐             Note: if `shared_attention_norm` is True,
           β”‚  ↓                     β”‚  ↓             ↓                   the output from `norm_1` is reused
           β”‚  norm_1                β”‚  norm_1  ───►  norm_2
           β”‚  ↓                     β”‚  ↓             ↓
           β”‚  attn                  β”‚  attn          mlp
           β”‚  ↓                     β”‚  ↓             β”‚
        β”Œβ”€ β””β–Ί +                     β””β–Ί + β—„β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        β”‚     norm_2
        β”‚     ↓
        β”‚     mlp
        β”‚     ↓
        └───► +
        """

        x_normed = self.norm_1(x)
        attention_output = self.attn(x_normed, cos, sin, mask, input_pos)

        if self.config.parallel_residual:
            x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x)
            x = self.mlp(x_normed) + attention_output + x
        else:
            x = attention_output + x
            x = self.mlp(self.norm_2(x)) + x
        return x


class CausalSelfAttention(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
        # key, query, value projections for all heads, but in a batch
        self.attn = nn.Linear(config.n_embd, shape, bias=config.add_qkv_bias)
        # output projection
        # if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
        self.proj = nn.Linear(
            config.head_size * config.n_head, config.n_embd, bias=config.bias
        )
        # disabled by default
        self.kv_cache: Optional[KVCache] = None

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        B, T, C = (
            x.size()
        )  # batch size, sequence length, embedding dimensionality (n_embd)

        qkv = self.attn(x)

        # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
        q_per_kv = self.config.n_head // self.config.n_query_groups
        total_qkv = q_per_kv + 2  # each group has 1+ queries, 1 key, and 1 value
        qkv = qkv.view(
            B, T, self.config.n_query_groups, total_qkv, self.config.head_size
        )
        qkv = qkv.permute(0, 2, 3, 1, 4)  # (B, n_query_groups, total_qkv, T, hs)

        # split batched computation into three
        q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)

        # maybe repeat k and v if for the non multi-head attention cases
        # training: flash attention requires it
        # inference: multi-query would require a full kv cache so avoid it to limit its memory usage
        if self.config.n_query_groups != self.config.n_head and (
            input_pos is None or self.config.n_query_groups != 1
        ):
            k = k.expand(
                B, self.config.n_query_groups, q_per_kv, T, self.config.head_size
            )
            v = v.expand(
                B, self.config.n_query_groups, q_per_kv, T, self.config.head_size
            )

        q = q.reshape(B, -1, T, self.config.head_size)  # (B, nh_q, T, hs)
        k = k.reshape(B, -1, T, self.config.head_size)  # (B, nh_k, T, hs)
        v = v.reshape(B, -1, T, self.config.head_size)  # (B, nh_v, T, hs)

        q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
        k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
        q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
        k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)

        if input_pos is not None:
            if not isinstance(self.kv_cache, KVCache):
                raise TypeError("You need to call `gpt.set_kv_cache()`")
            k, v = self.kv_cache(input_pos, k, v)

        y = self.scaled_dot_product_attention(q, k, v, mask)

        y = y.reshape(
            B, T, self.config.head_size * self.config.n_head
        )  # re-assemble all head outputs side by side

        # output projection
        return self.proj(y)

    def scaled_dot_product_attention(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        scale = 1.0 / math.sqrt(self.config.head_size)
        y = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
        )
        return y.transpose(1, 2)

    def build_kv_cache(
        self,
        batch_size: int,
        max_seq_length: int,
        rope_cache_length: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> "KVCache":
        heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
        v_shape = (batch_size, heads, max_seq_length, self.config.head_size)
        if rope_cache_length is None:
            if self.config.rotary_percentage != 1.0:
                raise TypeError(
                    "Please pass the `rope_cache_length=gpt.cos.size(-1)` value"
                )
            k_shape = v_shape
        else:
            k_shape = (
                batch_size,
                heads,
                max_seq_length,
                rope_cache_length + self.config.head_size - self.config.rope_n_elem,
            )
        return KVCache(k_shape, v_shape, device=device, dtype=dtype)


class GptNeoxMLP(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)

        self.config = config

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc(x)
        x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate)
        return self.proj(x)


class LLaMAMLP(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)

        self.config = config

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_fc_1 = self.fc_1(x)
        x_fc_2 = self.fc_2(x)
        x = torch.nn.functional.silu(x_fc_1) * x_fc_2
        return self.proj(x)


class whisperMLP(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.fc_1 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias)
        self.fc_2 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias)
        self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)

        self.config = config

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_fc_1 = self.fc_1(x)
        x_fc_2 = self.fc_2(x)
        x = torch.nn.functional.silu(x_fc_1) * x_fc_2
        return self.proj(x)


class GemmaMLP(LLaMAMLP):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x_fc_1 = self.fc_1(x)
        x_fc_2 = self.fc_2(x)
        x = (
            torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate)
            * x_fc_2
        )
        return self.proj(x)


class LLaMAMoE(nn.Module):
    def __init__(self, config: Config) -> None:
        super().__init__()
        self.gate = nn.Linear(config.n_embd, config.n_expert, bias=False)
        self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert))

        self.config = config

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Derived from: https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
        See also figure 1 in https://arxiv.org/abs/2211.15841
        """
        B, T, C = (
            x.size()
        )  # batch size, sequence length, embedding dimensionality (n_embd)
        x = x.view(-1, C)  # (B*T, C)
        router = self.gate(x)  # (B*T, n_expert)
        probs, indices = torch.topk(
            router, self.config.n_expert_per_token
        )  # (B*T, n_expert_per_token)
        probs = probs.softmax(dim=1, dtype=torch.float).to(dtype=x.dtype)
        masks = indices.unsqueeze(-1) == torch.arange(
            self.config.n_expert, device=x.device
        )
        masks = masks.permute(2, 0, 1)  # (n_expert, B*T, n_expert_per_token)
        y = torch.zeros_like(x)  # (B*T, C)
        for mask, expert in zip(masks, self.experts):
            token_idx, expert_idx = torch.where(mask)
            y[token_idx] += probs[token_idx, expert_idx, None] * expert(x[token_idx])
        return y.view(B, T, C)


def build_rope_cache(
    seq_len: int,
    n_elem: int,
    device: Optional[torch.device] = None,
    base: int = 10000,
    condense_ratio: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Enhanced Transformer with Rotary Position Embedding.

    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
    transformers/rope/__init__.py. MIT License:
    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
    """
    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))

    # Create position indexes `[0, 1, ..., seq_len - 1]`
    seq_idx = torch.arange(seq_len, device=device) / condense_ratio

    # Calculate the product of position index and $\theta_i$
    idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)

    return torch.cos(idx_theta), torch.sin(idx_theta)


def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
    head_size = x.size(-1)
    x1 = x[..., : head_size // 2]  # (B, nh, T, hs/2)
    x2 = x[..., head_size // 2 :]  # (B, nh, T, hs/2)
    rotated = torch.cat((-x2, x1), dim=-1)  # (B, nh, T, hs)
    roped = (x * cos) + (rotated * sin)
    return roped.to(dtype=x.dtype)


class KVCache(nn.Module):
    def __init__(
        self,
        k_shape: Tuple[int, int, int, int],
        v_shape: Tuple[int, int, int, int],
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__()
        self.register_buffer(
            "k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False
        )
        self.register_buffer(
            "v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False
        )

    def forward(
        self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # move the buffer to the activation dtype for when AMP is used
        self.k = self.k.to(k.dtype)
        self.v = self.v.to(v.dtype)
        # update the cache
        k = self.k.index_copy_(2, input_pos, k)
        v = self.v.index_copy_(2, input_pos, v)
        return k, v

    def reset_parameters(self) -> None:
        torch.nn.init.zeros_(self.k)
        torch.nn.init.zeros_(self.v)


def build_mask_cache(
    max_seq_length: int, device: Optional[torch.device] = None
) -> torch.Tensor:
    ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
    return torch.tril(ones).unsqueeze(0).unsqueeze(0)


class RMSNorm(torch.nn.Module):
    """Root Mean Square Layer Normalization.

    Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
    https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
    """

    def __init__(
        self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False
    ) -> None:
        super().__init__()
        self.weight = torch.nn.Parameter(torch.ones(size))
        self.eps = eps
        self.dim = dim
        self.add_unit_offset = add_unit_offset

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        dtype = x.dtype
        x = x.float()
        # NOTE: the original RMSNorm paper implementation is not equivalent
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        x_normed = x_normed.to(dtype=dtype)
        if self.add_unit_offset:
            # Gemma model requires a unit offset
            # https://github.com/google/gemma_pytorch/blob/main/gemma/model.py#L176
            return x_normed * (1 + self.weight)
        return x_normed * self.weight

    def reset_parameters(self) -> None:
        torch.nn.init.ones_(self.weight)