File size: 23,421 Bytes
2776201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.

"""Utility functions for training and inference."""
import inspect
import math
import os
import pickle
import shutil
import sys
from dataclasses import asdict, is_dataclass
from io import BytesIO
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Dict,
    Iterable,
    List,
    Literal,
    Mapping,
    Optional,
    TypeVar,
    Union,
)

import lightning as L
import torch
import torch.nn as nn
import torch.utils._device
import yaml
from lightning.fabric.loggers import CSVLogger, TensorBoardLogger
from lightning.fabric.strategies import FSDPStrategy
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.cli import instantiate_class
from torch.serialization import normalize_storage_type
from typing_extensions import Self

if TYPE_CHECKING:
    from litgpt import GPT, Config


def init_out_dir(out_dir: Path) -> Path:
    if not out_dir.is_absolute() and "LIGHTNING_ARTIFACTS_DIR" in os.environ:
        return Path(os.getenv("LIGHTNING_ARTIFACTS_DIR")) / out_dir
    return out_dir


def find_resume_path(
    resume: Union[bool, Literal["auto"], Path], out_dir: Path
) -> Optional[Path]:
    if not resume or isinstance(resume, Path):
        return resume

    resume_path = max(
        out_dir.rglob("step-*/*.pth"),
        key=(lambda p: int(p.parent.name.split("-")[1])),
        default=None,
    )
    if resume == "auto":
        return resume_path
    if resume is True and resume_path is None:
        raise FileNotFoundError(
            f"You passed `--resume=True`, but no checkpont file was found in `--out_dir={out_dir}`."
        )
    return resume_path


def find_multiple(n: int, k: int) -> int:
    assert k > 0
    if n % k == 0:
        return n
    return n + k - (n % k)


def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int:
    total = 0
    for p in module.parameters():
        if requires_grad is None or p.requires_grad == requires_grad:
            if hasattr(p, "quant_state"):
                # bitsandbytes 4bit layer support
                total += math.prod(p.quant_state.shape)
            else:
                total += p.numel()
    return total


def reset_parameters(module: nn.Module) -> None:
    """Calls `reset_parameters` on the module and all its submodules."""
    for mod in module.modules():
        if callable(getattr(mod, "reset_parameters", None)):
            mod.reset_parameters()


def check_valid_checkpoint_dir(
    checkpoint_dir: Path,
    model_filename: str = "lit_model.pth",
    verbose: bool = True,
    raise_error: bool = False,
) -> None:
    files = {
        model_filename: (checkpoint_dir / model_filename).is_file(),
        "model_config.yaml": (checkpoint_dir / "model_config.yaml").is_file(),
        "tokenizer.json OR tokenizer.model": (
            checkpoint_dir / "tokenizer.json"
        ).is_file()
        or (checkpoint_dir / "tokenizer.model").is_file(),
        "tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(),
    }
    if checkpoint_dir.is_dir():
        if all(files.values()):
            # we're good
            return
        problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}"
    else:
        problem = " is not a checkpoint directory"

    # list locally available checkpoints
    available = list(Path("checkpoints").glob("*/*"))
    if available:
        options = "\n".join([""] + [repr(str(p.resolve())) for p in available])
        extra = f"\nYou have downloaded locally:{options}\n"
    else:
        extra = ""

    if verbose:
        error_message = (
            f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
            "\nFind download instructions at https://github.com/Lightning-AI/litgpt/blob/main/tutorials\n"
            f"{extra}\nSee all download options by running:\n litgpt download"
        )
        print(error_message, file=sys.stderr)

    if raise_error:
        raise FileNotFoundError(
            f"checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
        )
    else:
        raise SystemExit(1)


class SavingProxyForStorage:
    def __init__(self, obj, saver, protocol_version=5):
        self.protocol_version = protocol_version
        self.saver = saver
        if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)):
            raise TypeError(f"expected storage, not {type(obj)}")

        # this logic is taken from PyTorch 2.0+ torch/serialization.py
        if isinstance(obj, torch.storage.TypedStorage):
            # PT upstream wants to deprecate this eventually...
            storage = obj._untyped_storage
            storage_type_str = obj._pickle_storage_type()
            storage_type = getattr(torch, storage_type_str)
            storage_numel = obj._size()
        else:
            storage = obj
            storage_type = normalize_storage_type(type(obj))
            storage_numel = storage.nbytes()

        storage_key = saver._write_storage_and_return_key(storage)
        location = torch.serialization.location_tag(storage)

        self.storage_info = (
            "storage",
            storage_type,
            storage_key,
            location,
            storage_numel,
        )

    def __reduce_ex__(self, protocol_version):
        assert False, "this should be handled with out of band"


class SavingProxyForTensor:
    def __init__(self, tensor, saver, protocol_version=5):
        self.protocol_version = protocol_version
        self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version)
        if reduce_args[0] == torch._utils._rebuild_tensor_v2:
            # for Tensors with Python attributes
            (a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args
            assert isinstance(
                storage, torch.storage.TypedStorage
            ), "Please check for updates"
            storage_proxy = SavingProxyForStorage(
                storage, saver, protocol_version=protocol_version
            )
            self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args)
        else:
            (storage, *other_reduce_args) = reduce_args
            assert isinstance(
                storage, torch.storage.TypedStorage
            ), "Please check for updates"
            storage_proxy = SavingProxyForStorage(
                storage, saver, protocol_version=protocol_version
            )
            self.reduce_args = (storage_proxy, *other_reduce_args)

    def __reduce_ex__(self, protocol_version):
        if protocol_version != self.protocol_version:
            raise RuntimeError(
                f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}"
            )
        return self.reduce_ret_fn, self.reduce_args


class IncrementalPyTorchPickler(pickle.Pickler):
    def __init__(self, saver, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.storage_dtypes = {}
        self.saver = saver
        self.id_map = {}

    # this logic is taken from PyTorch 2.0+ torch/serialization.py
    def persistent_id(self, obj):
        # FIXME: the docs say that persistent_id should only return a string
        # but torch store returns tuples. This works only in the binary protocol
        # see
        # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
        # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
        if isinstance(obj, SavingProxyForStorage):
            return obj.storage_info

        if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
            if isinstance(obj, torch.storage.TypedStorage):
                # TODO: Once we decide to break serialization FC, this case
                # can be deleted
                storage = obj._untyped_storage
                storage_dtype = obj.dtype
                storage_type_str = obj._pickle_storage_type()
                storage_type = getattr(torch, storage_type_str)
                storage_numel = obj._size()

            else:
                storage = obj
                storage_dtype = torch.uint8
                storage_type = normalize_storage_type(type(obj))
                storage_numel = storage.nbytes()

            # If storage is allocated, ensure that any other saved storages
            # pointing to the same data all have the same dtype. If storage is
            # not allocated, don't perform this check
            if storage.data_ptr() != 0:
                if storage.data_ptr() in self.storage_dtypes:
                    if storage_dtype != self.storage_dtypes[storage.data_ptr()]:
                        raise RuntimeError(
                            "Cannot save multiple tensors or storages that view the same data as different types"
                        )
                else:
                    self.storage_dtypes[storage.data_ptr()] = storage_dtype

            storage_key = self.id_map.get(storage._cdata)
            if storage_key is None:
                storage_key = self.saver._write_storage_and_return_key(storage)
                self.id_map[storage._cdata] = storage_key
            location = torch.serialization.location_tag(storage)

            return ("storage", storage_type, storage_key, location, storage_numel)

        return None


class incremental_save:
    def __init__(self, name):
        self.name = name
        self.zipfile = torch._C.PyTorchFileWriter(str(name))
        self.has_saved = False
        self.next_key = 0

    def __enter__(self):
        return self

    def store_early(self, tensor):
        if isinstance(tensor, torch.Tensor):
            return SavingProxyForTensor(tensor, self)
        raise TypeError(f"can only store tensors early, not {type(tensor)}")

    def save(self, obj):
        if self.has_saved:
            raise RuntimeError("have already saved")
        # Write the pickle data for `obj`
        data_buf = BytesIO()
        pickler = IncrementalPyTorchPickler(self, data_buf, protocol=5)
        pickler.dump(obj)
        data_value = data_buf.getvalue()
        self.zipfile.write_record("data.pkl", data_value, len(data_value))
        self.has_saved = True

    def _write_storage_and_return_key(self, storage):
        if self.has_saved:
            raise RuntimeError("have already saved")
        key = self.next_key
        self.next_key += 1
        name = f"data/{key}"
        if storage.device.type != "cpu":
            storage = storage.cpu()
        num_bytes = storage.nbytes()
        self.zipfile.write_record(name, storage.data_ptr(), num_bytes)
        return key

    def __exit__(self, type, value, traceback):
        self.zipfile.write_end_of_file()


T = TypeVar("T")


def chunked_cross_entropy(
    logits: Union[torch.Tensor, List[torch.Tensor]],
    targets: torch.Tensor,
    chunk_size: int = 128,
    ignore_index: int = -100,
) -> torch.Tensor:
    # with large max_sequence_lengths, the beginning of `backward` allocates a large memory chunk which can dominate
    # the memory usage in fine-tuning settings with low number of parameters.
    # as a workaround hack, the cross entropy computation is chunked to force it to deallocate on the go, reducing
    # the memory spike's magnitude

    # lm_head was chunked (we are fine-tuning)
    if isinstance(logits, list):
        # don't want to chunk cross entropy
        if chunk_size == 0:
            logits = torch.cat(logits, dim=1)
            logits = logits.reshape(-1, logits.size(-1))
            targets = targets.reshape(-1)
            return torch.nn.functional.cross_entropy(
                logits, targets, ignore_index=ignore_index
            )

        # chunk cross entropy
        logit_chunks = [
            logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits
        ]
        target_chunks = [
            target_chunk.reshape(-1)
            for target_chunk in targets.split(logits[0].size(1), dim=1)
        ]
        loss_chunks = [
            torch.nn.functional.cross_entropy(
                logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none"
            )
            for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
        ]
        non_masked_elems = (targets != ignore_index).sum()
        # See [non_masked_elems div note]
        return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(
            torch.ones_like(non_masked_elems)
        )

    # no chunking at all
    logits = logits.reshape(-1, logits.size(-1))
    targets = targets.reshape(-1)
    if chunk_size == 0:
        return torch.nn.functional.cross_entropy(
            logits, targets, ignore_index=ignore_index
        )

    # lm_head wasn't chunked, chunk cross entropy
    logit_chunks = logits.split(chunk_size)
    target_chunks = targets.split(chunk_size)
    loss_chunks = [
        torch.nn.functional.cross_entropy(
            logit_chunk, target_chunk, ignore_index=ignore_index, reduction="none"
        )
        for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
    ]
    non_masked_elems = (targets != ignore_index).sum()
    # [non_masked_elems div note]:
    #   max(1, non_masked_elems) would be more ergonomic to avoid a division by zero. However that
    #   results in a python int which is then passed back to torch division. By using the
    #   `x.maximum(torch.ones_like(x))` pattern we avoid a cudaStreamSynchronize.
    return torch.cat(loss_chunks).sum() / non_masked_elems.maximum(
        torch.ones_like(non_masked_elems)
    )


def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict:
    for checkpoint_name, attribute_name in mapping.items():
        full_checkpoint_name = prefix + checkpoint_name
        if full_checkpoint_name in state_dict:
            full_attribute_name = prefix + attribute_name
            state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name)
    return state_dict


def get_default_supported_precision(training: bool) -> str:
    """Return default precision that is supported by the hardware: either `bf16` or `16`.

    Args:
        training: `-mixed` or `-true` version of the precision to use

    Returns:
        default precision that is suitable for the task and is supported by the hardware
    """
    from lightning.fabric.accelerators import MPSAccelerator

    if MPSAccelerator.is_available() or (
        torch.cuda.is_available() and not torch.cuda.is_bf16_supported()
    ):
        return "16-mixed" if training else "16-true"
    return "bf16-mixed" if training else "bf16-true"


def load_checkpoint(
    fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True
) -> None:
    if isinstance(fabric.strategy, FSDPStrategy):
        fabric.load_raw(checkpoint_path, model, strict=strict)
    else:
        state_dict = lazy_load(checkpoint_path)
        state_dict = state_dict.get("model", state_dict)
        model.load_state_dict(state_dict, strict=strict)


def flops_per_param(
    max_seq_length: int, n_layer: int, n_embd: int, n_params: int
) -> int:
    flops_per_token = (
        2 * n_params
    )  # each parameter is used for a MAC (2 FLOPS) per network operation
    # this assumes that all samples have a fixed length equal to the block size
    # which is most likely false during finetuning
    flops_per_seq = flops_per_token * max_seq_length
    attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2))
    return flops_per_seq + attn_flops_per_seq


def estimate_flops(model: "GPT", training: bool) -> int:
    """Measures estimated FLOPs for MFU.

    Refs:
        * https://ar5iv.labs.arxiv.org/html/2205.05198#A1
        * https://ar5iv.labs.arxiv.org/html/2204.02311#A2
    """
    # using all parameters for this is a naive over estimation because not all model parameters actually contribute to
    # this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage
    # (~10%) compared to the measured FLOPs, making those lower but more realistic.
    # For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper.
    n_trainable_params = num_parameters(model, requires_grad=True)
    trainable_flops = flops_per_param(
        model.max_seq_length,
        model.config.n_layer,
        model.config.n_embd,
        n_trainable_params,
    )
    # forward + backward + gradients (assumes no gradient accumulation)
    ops_per_step = 3 if training else 1
    n_frozen_params = num_parameters(model, requires_grad=False)
    frozen_flops = flops_per_param(
        model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params
    )
    # forward + backward
    frozen_ops_per_step = 2 if training else 1
    return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops


class CycleIterator:
    """An iterator that cycles through an iterable indefinitely.

    Example:
        >>> iterator = CycleIterator([1, 2, 3])
        >>> [next(iterator) for _ in range(5)]
        [1, 2, 3, 1, 2]

    Note:
        Unlike ``itertools.cycle``, this iterator does not cache the values of the iterable.
    """

    def __init__(self, iterable: Iterable) -> None:
        self.iterable = iterable
        self.epoch = 0
        self._iterator = None

    def __next__(self) -> Any:
        if self._iterator is None:
            self._iterator = iter(self.iterable)
        try:
            return next(self._iterator)
        except StopIteration:
            self._iterator = iter(self.iterable)
            self.epoch += 1
            return next(self._iterator)

    def __iter__(self) -> Self:
        return self


def copy_config_files(source_dir: Path, out_dir: Path) -> None:
    """Copies the specified configuration and tokenizer files into the output directory."""

    config_files = ["config.json", "generation_config.json", "model_config.yaml"]
    tokenizer_files = ["tokenizer.json", "tokenizer.model", "tokenizer_config.json"]

    for file_name in config_files + tokenizer_files:
        src_path = source_dir / file_name
        if src_path.exists():
            shutil.copy(src_path, out_dir)


def CLI(*args: Any, **kwargs: Any) -> Any:
    from jsonargparse import CLI, set_config_read_mode, set_docstring_parse_options

    set_docstring_parse_options(attribute_docstrings=True)
    set_config_read_mode(urls_enabled=True)

    return CLI(*args, **kwargs)


def capture_hparams() -> Dict[str, Any]:
    """Captures the local variables ('hyperparameters') from where this function gets called."""
    caller_frame = inspect.currentframe().f_back
    locals_of_caller = caller_frame.f_locals
    hparams = {}
    for name, value in locals_of_caller.items():
        if value is None or isinstance(value, (int, float, str, bool, Path)):
            hparams[name] = value
        elif is_dataclass(value):
            hparams[name] = asdict(value)
        else:
            hparams[name] = str(value)
    return hparams


def save_hyperparameters(function: callable, checkpoint_dir: Path) -> None:
    """Captures the CLI parameters passed to `function` without running `function` and saves them to the checkpoint."""
    from jsonargparse import capture_parser

    # TODO: Make this more robust
    # This hack strips away the subcommands from the top-level CLI
    # to parse the file as if it was called as a script
    known_commands = [
        ("finetune_full",),  # For subcommands, use `("finetune", "full")` etc
        ("finetune_lora",),
        ("finetune_adapter",),
        ("finetune_adapter_v2",),
        ("finetune",),
        ("pretrain",),
    ]
    for known_command in known_commands:
        unwanted = slice(1, 1 + len(known_command))
        if tuple(sys.argv[unwanted]) == known_command:
            sys.argv[unwanted] = []

    parser = capture_parser(lambda: CLI(function))
    config = parser.parse_args()
    parser.save(config, checkpoint_dir / "hyperparameters.yaml", overwrite=True)


def save_config(config: "Config", checkpoint_dir: Path) -> None:
    config_dict = asdict(config)
    with open(checkpoint_dir / "model_config.yaml", "w", encoding="utf-8") as fp:
        yaml.dump(config_dict, fp)


def parse_devices(devices: Union[str, int]) -> int:
    if devices in (-1, "auto"):
        return torch.cuda.device_count() or 1
    if isinstance(devices, int) and devices > 0:
        return devices
    raise ValueError(f"Devices must be 'auto' or a positive integer, got: {devices!r}")


def choose_logger(
    logger_name: Literal["csv", "tensorboard", "wandb"],
    out_dir: Path,
    name: str,
    log_interval: int = 1,
    resume: Optional[bool] = None,
    **kwargs: Any,
):
    if logger_name == "csv":
        return CSVLogger(
            root_dir=(out_dir / "logs"),
            name="csv",
            flush_logs_every_n_steps=log_interval,
            **kwargs,
        )
    if logger_name == "tensorboard":
        return TensorBoardLogger(
            root_dir=(out_dir / "logs"), name="tensorboard", **kwargs
        )
    if logger_name == "wandb":
        return WandbLogger(project=name, resume=resume, **kwargs)
    raise ValueError(
        f"`--logger_name={logger_name}` is not a valid option. Choose from 'csv', 'tensorboard', 'wandb'."
    )


def get_argument_names(cls):
    sig = inspect.signature(cls.__init__)
    return {
        name
        for name, param in sig.parameters.items()
        if param.kind
        in [inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY]
    }


def instantiate_bnb_optimizer(optimizer, model_parameters):
    if (isinstance(optimizer, str) and "AdamW" not in optimizer) or (
        isinstance(optimizer, dict) and "AdamW" not in optimizer.get("class_path", "")
    ):
        raise ValueError(
            "The chosen quantization format only supports the AdamW optimizer."
        )

    import bitsandbytes as bnb

    if isinstance(optimizer, str):
        optimizer = bnb.optim.PagedAdamW(model_parameters)
    else:
        optim_args = get_argument_names(bnb.optim.PagedAdamW)
        allowed_kwargs = {
            key: optimizer["init_args"][key]
            for key in optim_args & optimizer["init_args"].keys()
        }
        optimizer = bnb.optim.PagedAdamW(model_parameters, **allowed_kwargs)
    return optimizer


def instantiate_torch_optimizer(optimizer, model_parameters, **kwargs):
    if isinstance(optimizer, str):
        optimizer_cls = getattr(torch.optim, optimizer)
        optimizer = optimizer_cls(model_parameters, **kwargs)
    else:
        optimizer = dict(optimizer)  # copy
        optimizer["init_args"].update(kwargs)
        optimizer = instantiate_class(model_parameters, optimizer)
    return optimizer


def extend_checkpoint_dir(checkpoint_dir: Path) -> Path:
    new_checkpoint_dir = "checkpoints" / checkpoint_dir
    should_return_new_dir = (
        not checkpoint_dir.is_dir()
        and checkpoint_dir.parts[0] != "checkpoints"
        and not checkpoint_dir.is_absolute()
        and new_checkpoint_dir.exists()
    )
    return new_checkpoint_dir if should_return_new_dir else checkpoint_dir