Spaces:
Running
Running
import gradio as gr | |
import os | |
os.system('python -m spacy download en_core_web_sm') | |
import spacy | |
from spacy import displacy | |
nlp = spacy.load("en_core_web_sm") | |
def text_analysis(text): | |
doc = nlp(text) | |
html = displacy.render(doc, style="dep", page=True) | |
html = ( | |
"<div style='max-width:100%; max-height:360px; overflow:auto'>" | |
+ html | |
+ "</div>" | |
) | |
pos_count = { | |
"char_count": len(text), | |
"token_count": 0, | |
} | |
pos_tokens = [] | |
for token in doc: | |
pos_tokens.extend([(token.text, token.pos_), (" ", None)]) | |
return pos_tokens, pos_count, html | |
demo = gr.Interface( | |
text_analysis, | |
gr.Textbox(placeholder="Enter sentence here..."), | |
["highlight", "json", "html"], | |
examples=[ | |
["What a beautiful morning for a walk!"], | |
["It was the best of times, it was the worst of times."], | |
], | |
) | |
demo.launch() | |