gravelcompbio commited on
Commit
05f403c
1 Parent(s): 31a2e39

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -227
README.md CHANGED
@@ -9,10 +9,7 @@ app_file: app.py
9
  pinned: false
10
  license: cc-by-nc-nd-4.0
11
  ---
12
-
13
-
14
-
15
- <!-- This Github was Made By Nathan Gravel and tested with help of Mariah Salcedo-->
16
 
17
  # Phosformer-ST <img src="https://github.com/gravelCompBio/Phosformer-ST/assets/75225868/f375e377-b639-4b8c-9792-6d8e5e9e6c39" width="60">
18
 
@@ -24,9 +21,6 @@ license: cc-by-nc-nd-4.0
24
 
25
 
26
 
27
-
28
-
29
-
30
 
31
 
32
 
@@ -34,14 +28,7 @@ license: cc-by-nc-nd-4.0
34
 
35
 
36
 
37
- This repository contains the code to run Phosformer-ST locally from the manuscript "Phosformer-ST: explainable machine learning
38
-
39
- uncovers the kinase-substrate interaction landscape" . This readme should also give you the specific versions for all packages used to run Phosformer-ST in a local environment.
40
-
41
- The model was created by Zhongliang Zhou and Wayland Yeung. The Phos-ST webtool is found from this link (https://phosformer.netlify.app/) and was generated by Saber Soleymani.
42
-
43
-
44
-
45
  </br>
46
 
47
 
@@ -76,60 +63,45 @@ The model was created by Zhongliang Zhou and Wayland Yeung. The Phos-ST webtool
76
 
77
 
78
 
79
-
80
-
81
-
82
-
83
- - `phos-ST_Example_Code.ipynb`: Jupyter File with example code to run Phosformer-ST
84
-
85
-
86
-
87
- - `modeling_esm.py`: Python file that has the architecture of Phosformer-ST
88
-
89
-
90
-
91
- - `configuration_esm.py`: Python file that has configuration/parameters of Phosformer-ST
92
-
93
 
94
 
95
- - `tokenization_esm.py`: Python file that contains code for the tokenizer
96
 
97
 
98
 
 
 
 
 
 
 
 
 
 
99
 
100
 
101
- - `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`: this txt file contains a link to a zenodo repository to download the proper folder
102
-
103
 
104
 
105
- - This folder holds the files that contained the training weights for Phosformer-ST to run as advertised
106
-
107
- - See section below (Downloading this repository) to be shown how to download this folder and where to put it
108
-
109
-
110
- - `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90`: folder of the training weights for Phosformer-ST to run as advertised
111
 
 
112
 
113
 
114
- - `phosST.yml`: This file is used to help create an environment for Phos-ST to work
115
 
116
 
117
 
118
- - `README.md`: You're reading it right now
119
 
120
 
121
 
122
- - `LICENSE`: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License
123
-
124
 
125
- - `app.py`: Contains the code to get huggingface to work as a webtool (with gradio)
126
 
127
 
128
- - `requirements.txt`: requirements for huggingface to download to get this webtoool to work
129
-
130
 
131
 
132
-
133
 
134
 
135
  </br>
@@ -141,7 +113,6 @@ The model was created by Zhongliang Zhou and Wayland Yeung. The Phos-ST webtool
141
 
142
 
143
 
144
-
145
 
146
 
147
  ## Installing dependencies with version info
@@ -225,71 +196,7 @@ Follow along with its recommendation
225
  Installing torch can be the most complex part
226
 
227
 
228
-
229
-
230
-
231
- </br>
232
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
240
-
241
- ### The computer specs that we know that this model can run on (with gpu acceleration)
242
-
243
-
244
-
245
- </br>
246
-
247
-
248
-
249
- **Computer 1**
250
-
251
-
252
-
253
- Ubuntu 22.04.2 LTS
254
-
255
-
256
-
257
- Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
258
-
259
-
260
-
261
- 64 GB ram
262
-
263
-
264
-
265
- NVIDIA Quadro RTX 5000 (16 GB vRAM)(CUDA Version: 12.1)
266
-
267
-
268
-
269
- </br>
270
-
271
-
272
-
273
- **Computer 2**
274
-
275
-
276
-
277
- Ubuntu 20.04.6 LTS
278
-
279
-
280
-
281
- Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
282
-
283
-
284
-
285
- 64 GB ram
286
-
287
 
288
-
289
- NVIDIA RTX A4000 (16 GB vRAM)(CUDA Version: 12.2)
290
-
291
-
292
-
293
 
294
 
295
 
@@ -300,7 +207,6 @@ NVIDIA RTX A4000 (16 GB vRAM)(CUDA Version: 12.2)
300
 
301
  </br>
302
 
303
-
304
 
305
 
306
 
@@ -360,7 +266,7 @@ The `Phosformer-ST_with_trainging_weights` folder should have the following file
360
 
361
 
362
 
363
- - folder 1 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90` (make sure it is unzipped)
364
 
365
 
366
 
@@ -393,7 +299,7 @@ Once you have a folder with the files/folder above in it you have done all the d
393
 
394
  ### PICK ONE of the options below
395
 
396
- ### Option 1) Utilizing the PhosformerST.yml file
397
 
398
  here is a step-by-step guide to set up the environment with the yml file
399
 
@@ -417,9 +323,9 @@ conda activate phosST
417
 
418
 
419
 
420
- ### Option 2) Creating this environment without yml file
421
 
422
- (This is if torch is being weird with your version of cuda or any other problem)
423
 
424
  Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed)
425
 
@@ -477,11 +383,11 @@ pip3 install torch torchvision torchaudio
477
 
478
 
479
 
480
- ### the terminal line above might look different for you
481
 
482
 
483
 
484
- We provided code to test Phos-ST (see section below)
485
 
486
 
487
 
@@ -499,21 +405,19 @@ We provided code to test Phos-ST (see section below)
499
 
500
 
501
 
502
- ## Utilizing the Model with our example
503
 
504
  All the following code examples is done inside of the `phos-ST_Example_Code.ipynb` file using jupyter lab
505
 
506
 
507
 
508
- Once you have your environment resolved just use jupyter lab to access the example code by typing the comand below in your terminal (when you're in the `Phosformer-ST` folder)
509
 
510
  ```
511
-
512
  jupyter lab
513
-
514
  ```
515
 
516
- Once you open the notebook on your browser, run each cell of notebook
517
 
518
 
519
 
@@ -521,28 +425,20 @@ Once you open the notebook on your browser, run each cell of notebook
521
 
522
 
523
 
524
- ### Testing Phos-ST with the example code
525
-
526
- There should be a positive control and a negative control example code at bottom of the `phos-ST_Example_Code.ipynb` file. This is here just to sanity check that the model is working. The positive and negative control is running the same code with known examples where Phos-ST should give an answered close to 1 (positive control) or 0 (negative control).
527
 
 
528
 
529
 
530
  **Positive Example**
531
 
532
  ```Python
533
-
534
  # P17612 KAPCA_HUMAN
535
-
536
  kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
537
-
538
  # P53602_S96_LARKRRNSRDGDPLP
539
-
540
  substrate="LARKRRNSRDGDPLP"
541
-
542
 
543
-
544
  phosST(kinDomain,substrate).to_csv('PostiveExample.csv')
545
-
546
  ```
547
 
548
 
@@ -552,22 +448,15 @@ phosST(kinDomain,substrate).to_csv('PostiveExample.csv')
552
  **Negative Example**
553
 
554
  ```Python
555
-
556
  # P17612 KAPCA_HUMAN
557
-
558
  kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
559
-
560
  # Q01831_T169_PVEIEIETPEQAKTR
561
-
562
  substrate="PVEIEIETPEQAKTR"
563
-
564
 
565
-
566
  phosST(kinDomain,substrate).to_csv('NegitiveExample.csv')
567
-
568
  ```
569
 
570
- Both scores should show up in a csv file in the same folder of this code
571
 
572
 
573
 
@@ -577,23 +466,21 @@ Both scores should show up in a csv file in the same folder of this code
577
 
578
  ### Inputting your own data for novel predictions
579
 
580
- One can simply take the code from above and modify the string variables `kinDomain` and `substrate` to your prediction of interest
581
 
582
 
583
 
584
- **Formatting of the `kinDomain` and `substrate` for input for phos-ST are as followed:**
585
 
586
 
587
 
588
- - `kinDomain` should just be the kinase domain (instead of the full sequence), preferably human, and a Serine/Threonine kinases
589
-
590
 
591
-
592
- - `substrate` should be a 15mer with the center residue/char being the Serine or Threonine being phosphorylated
593
 
594
 
595
 
596
- Not following these rules will still give you and output at time but does not guarantee a prediction with the accuracy advertised
597
 
598
 
599
 
@@ -603,154 +490,107 @@ Not following these rules will still give you and output at time but does not gu
603
 
604
 
605
 
606
- ### How to interoperate Phosformer-ST's output
607
 
608
- This model was trained to use the cutoff of 0.5 as the difference between positive prediction and negative prediction
609
 
610
-
611
 
612
- If your custom prediction is above 0.5, the model is predicting the kinase-substrate pair is a positive prediction for a phosphorylation event
613
 
614
-
615
 
616
- Though the training data is ultimately based on a positional scanning peptide array, this model only takes into account kinase binding preference.
617
 
618
 
619
-
620
- Combining with other special, temporal, or other biologically relevant filters might be more accurate when modeling protein kinase.
621
-
622
 
623
 
624
  </br>
625
 
626
 
627
-
628
 
629
 
630
-
631
 
632
 
633
 
634
- ### Modifying the code to take in a list of kinase domains and substrates
635
-
636
- Currenly, we have it only predicting one kinase domain + one substrate at a time. One can simply swap out the `helper function to use Phos-ST` code-block with the code-block below. The input arguments now require a list of strings for both the kinase domains and substrates. Make sure the list of both kinases and substrates are the same length and conserve the same format specified in the "Inputting your own data for novel predictions" section of the readme
637
-
638
- ```Python
639
-
640
- # P17612 KAPCA_HUMAN listed twice
641
-
642
- kinDomains=["FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF","FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"]
643
 
644
 
645
 
646
- # P53602_S96_LARKRRNSRDGDPLP listed first and Q01831_T169_PVEIEIETPEQAKTR listed second
647
-
648
- substrates=["LARKRRNSRDGDPLP","PVEIEIETPEQAKTR"]
649
-
650
-
651
 
652
 
653
 
654
- def phosST(kinaseDomainSeqs,substrate15mers):
655
 
656
- job = run_model(
657
-
658
- substrate15mers,
659
-
660
- kinaseDomainSeqs,
661
-
662
- model=model,
663
-
664
- tokenizer=tokenizer,
665
-
666
- device='cuda',
667
-
668
- batch_size=10,
669
-
670
- output_hidden_states=False,
671
-
672
- output_attentions=False,
673
-
674
- )
675
-
676
-
677
-
678
- #total = dataset.shape[0]
679
-
680
- results = {
681
 
682
- 'kinase' : [],
683
 
684
- 'peptide' : [],
685
 
686
- 'prob' : [],
687
 
688
- }
689
 
690
-
691
 
692
- for n, i in enumerate(job):
693
 
694
- #sys.stderr.write(f'{n+1} / {total}\r')
695
 
696
- results['kinase' ] += [i['kinase']]
697
 
698
- results['peptide'] += [i['peptide']]
699
 
700
- results['prob' ] += [i['probability']]
701
 
702
-
703
 
704
- result = pd.DataFrame(results)
705
 
706
 
707
 
708
- return result
709
 
710
 
711
 
712
-
713
 
714
-
715
 
716
- phosST(kinDomains,substrates).to_csv('BatchExample.csv')
717
 
718
 
719
 
720
-
721
 
722
 
723
 
724
-
725
 
726
- ```
727
 
728
- </br>
 
729
 
730
 
731
 
732
- </br>
733
 
734
 
735
 
736
- ## Troubleshooting
737
 
738
 
739
 
740
- If torch is not installing correctly or you do not have a GPU to run Phos-ST on, the CPU version of torch is perfectly fine to use
741
 
742
 
743
 
744
- Using the CPU version of torch might 10x to 1000x your run time so for large prediction datasets GPU acceleration is suggested
745
 
746
-
747
 
748
- If you just are here to test if it phos-ST works, the example code should not take too much time to run on the CPU version of torch
749
 
750
-
751
 
752
- Also depending on your GPU the `batch_size` argument might need to be adjusted
 
753
 
 
 
754
 
 
755
 
756
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
9
  pinned: false
10
  license: cc-by-nc-nd-4.0
11
  ---
12
+ <!-- This github was Made by Nathan Gravel -->
 
 
 
13
 
14
  # Phosformer-ST <img src="https://github.com/gravelCompBio/Phosformer-ST/assets/75225868/f375e377-b639-4b8c-9792-6d8e5e9e6c39" width="60">
15
 
 
21
 
22
 
23
 
 
 
 
24
 
25
 
26
 
 
28
 
29
 
30
 
31
+ This repository contains the code to run Phosformer-ST locally described in the manuscript "Phosformer-ST: explainable machine learning uncovers the kinase-substrate interaction landscape". This readme also provides instructions on all dependencies and packages required to run Phosformer-ST in a local environment.
 
 
 
 
 
 
 
32
  </br>
33
 
34
 
 
63
 
64
 
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
+ - `phos-ST_Example_Code.ipynb`: ipynb file with example code to run Phosformer-ST
69
 
70
 
71
 
72
+ - `modeling_esm.py`: Python file that has the architecture of Phosformer-ST
73
+
74
+
75
+
76
+ - `configuration_esm.py`: Python file that has configuration/parameters of Phosformer-ST
77
+
78
+
79
+
80
+ - `tokenization_esm.py`: Python file that contains code for the tokenizer
81
 
82
 
 
 
83
 
84
 
85
+ - `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`: this txt file contains a link to the training weights held on the hugging face or zenodo repository
 
 
 
 
 
86
 
87
+ - See section below (Downloading this repository) to be shown how to download this folder and where to put it
88
 
89
 
90
+ - `phosST.yml`: This file is used to help create an environment for Phosformer-ST to work
91
 
92
 
93
 
94
+ - `README.md`:
95
 
96
 
97
 
98
+ - `LICENSE`: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License
 
99
 
 
100
 
101
 
102
+
 
103
 
104
 
 
105
 
106
 
107
  </br>
 
113
 
114
 
115
 
 
116
 
117
 
118
  ## Installing dependencies with version info
 
196
  Installing torch can be the most complex part
197
 
198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
 
 
 
 
 
 
200
 
201
 
202
 
 
207
 
208
  </br>
209
 
 
210
 
211
 
212
 
 
266
 
267
 
268
 
269
+ - folder 1 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90`
270
 
271
 
272
 
 
299
 
300
  ### PICK ONE of the options below
301
 
302
+ ### Main Option) Utilizing the PhosformerST.yml file
303
 
304
  here is a step-by-step guide to set up the environment with the yml file
305
 
 
323
 
324
 
325
 
326
+ ### Alternative option) Creating this environment without yml file
327
 
328
+ (This is if torch is not working with your version of cuda or any other problem)
329
 
330
  Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed)
331
 
 
383
 
384
 
385
 
386
+ ### the terminal line above might look different for you
387
 
388
 
389
 
390
+ We provided code to test Phosformer-ST (see section below)
391
 
392
 
393
 
 
405
 
406
 
407
 
408
+ ## Utilizing the Model with our example code
409
 
410
  All the following code examples is done inside of the `phos-ST_Example_Code.ipynb` file using jupyter lab
411
 
412
 
413
 
414
+ Once you have your environment resolved just use jupyter lab to access the example code by typing the command below in your terminal (when you're in the `Phosformer-ST` folder)
415
 
416
  ```
 
417
  jupyter lab
 
418
  ```
419
 
420
+ Once you open the notebook on your browser, run each cell in the notebook
421
 
422
 
423
 
 
425
 
426
 
427
 
428
+ ### Testing Phosformer-ST with the example code
 
 
429
 
430
+ There should be a positive control and a negative control example code at the bottom of the `phos-ST_Example_Code.ipynb` file which can be used to test the model.
431
 
432
 
433
  **Positive Example**
434
 
435
  ```Python
 
436
  # P17612 KAPCA_HUMAN
 
437
  kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
 
438
  # P53602_S96_LARKRRNSRDGDPLP
 
439
  substrate="LARKRRNSRDGDPLP"
 
440
 
 
441
  phosST(kinDomain,substrate).to_csv('PostiveExample.csv')
 
442
  ```
443
 
444
 
 
448
  **Negative Example**
449
 
450
  ```Python
 
451
  # P17612 KAPCA_HUMAN
 
452
  kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
 
453
  # Q01831_T169_PVEIEIETPEQAKTR
 
454
  substrate="PVEIEIETPEQAKTR"
 
455
 
 
456
  phosST(kinDomain,substrate).to_csv('NegitiveExample.csv')
 
457
  ```
458
 
459
+ Both scores should show up in a csv file in the current directory
460
 
461
 
462
 
 
466
 
467
  ### Inputting your own data for novel predictions
468
 
469
+ One can simply take the code from above and modify the string variables `kinDomain` and `substrate` to make predictions on any given kinase substrate pairs
470
 
471
 
472
 
473
+ **Formatting of the `kinDomain` and `substrate` for input for Phosformer-ST are as follows:**
474
 
475
 
476
 
477
+ - `kinDomain` should be a human Serine/Threonine kinase domain (not the full sequence).
 
478
 
479
+ - `substrate` should be a 15mer with the center residue/char being the target Serine or Threonine being phosphorylated
 
480
 
481
 
482
 
483
+ Not following these rules may result in dubious predictions
484
 
485
 
486
 
 
490
 
491
 
492
 
493
+ ### How to interpret Phosformer-ST's output
494
 
495
+ This model outputs a prediction score between 1 and 0.
496
 
 
497
 
498
+ We trained the model to uses a cutoff of 0.5 to distinguish positive and negative predictions
499
 
 
500
 
501
+ A score of 0.5 or above indicates a positive prediction for peptide substrate phosphorylation by the given kinase
502
 
503
 
 
 
 
504
 
505
 
506
  </br>
507
 
508
 
 
509
 
510
 
511
+ ## Troubleshooting
512
 
513
 
514
 
515
+ If torch is not installing correctly or you do not have a GPU to run Phosformer-ST on, the CPU version of torch is perfectly fine to use
 
 
 
 
 
 
 
 
516
 
517
 
518
 
519
+ Using the CPU version of torch might increase your run time so for large prediction datasets GPU acceleration is suggested
 
 
 
 
520
 
521
 
522
 
523
+ If you just are here to test if it Phosformer-ST works, the example code should not take too much time to run on the CPU version of torch
524
 
525
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526
 
527
+ Also depending on your GPU the `batch_size` argument might need to be adjusted
528
 
 
529
 
530
+ ### The model has been tested on the following computers with the following specifications for trouble shooting proposes
531
 
532
+
533
 
534
+ </br>
535
 
536
+
537
 
538
+ **Computer 1**
539
 
 
540
 
 
541
 
542
+ NVIDIA Quadro RTX 5000 (16 GB vRAM)(CUDA Version: 12.1)
543
 
544
+
545
 
546
+ Ubuntu 22.04.2 LTS
547
 
548
 
549
 
550
+ Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
551
 
552
 
553
 
554
+ 64 GB ram
555
 
 
556
 
 
557
 
558
 
559
 
560
+ </br>
561
 
562
 
563
 
564
+ **Computer 2**
565
 
 
566
 
567
+
568
+ NVIDIA RTX A4000 (16 GB vRAM)(CUDA Version: 12.2)
569
 
570
 
571
 
572
+ Ubuntu 20.04.6 LTS
573
 
574
 
575
 
576
+ Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
577
 
578
 
579
 
580
+ 64 GB ram
581
 
582
 
583
 
 
584
 
 
585
 
 
586
 
 
587
 
588
+ </br>
589
+
590
 
591
+ ## Other accessory tools and resources
592
+ A webtool for Phosformer-ST can be accessed from: https://phosformer.netlify.app/. A huggingface repository can be downloaded from: https://huggingface.co/gravelcompbio/Phosformer-ST_with_trainging_weights. A huggingface spaces app is available at: https://huggingface.co/spaces/gravelcompbio/Phosformer-ST
593
 
594
+ The github can be found here https://github.com/gravelCompBio/Phosformer-ST/tree/main
595
 
596
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference