Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
import time | |
import numpy as np | |
from torch.nn import functional as F | |
import os | |
from threading import Thread | |
print(f"Starting to load the model to memory") | |
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b", trust_remote_code=True) | |
tok.padding_side = "left" | |
tok.pad_token_id = tokenizer.eos_token_id | |
# using CUDA for an optimal experience | |
slot="<slot_for_user_input_design_by_xm>" | |
chat=[{"role": "user", "content": slot}] | |
sample_input = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
input_start_id=sample_input.find(slot) | |
prefix=sample_input[:input_start_id] | |
suffix=sample_input[input_start_id+len(slot):] | |
print(tok.encode(prefix,return_tensors="pt")[0]) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
m = AutoModelForCausalLM.from_pretrained( | |
"stabilityai/stablelm-2-zephyr-1_6b", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, trust_remote_code=True) | |
embedding_func=m.get_input_embeddings() | |
embedding_func.weight.requires_grad=False | |
m = m.to(device) | |
print(f"Sucessfully loaded the model to the memory") | |
start_message = "" | |
def user(message, history): | |
# Append the user's message to the conversation history | |
return "", history + [[message, ""]] | |
#def defense(message): | |
# to determine whether the query is malicious | |
def chat(message, history): | |
chat = [] | |
for item in history: | |
chat.append({"role": "user", "content": item[0]}) | |
if item[1] is not None: | |
chat.append({"role": "assistant", "content": item[1]}) | |
chat.append({"role": "user", "content": message}) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
# Tokenize the messages string | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer( | |
tok, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.90, | |
temperature=0.6, | |
num_beams=1 | |
) | |
t = Thread(target=m.generate, kwargs=generate_kwargs) | |
t.start() | |
# Initialize an empty string to store the generated text | |
partial_text = "" | |
for new_text in streamer: | |
print(new_text) | |
partial_text += new_text | |
# Yield an empty string to cleanup the message textbox and the updated conversation history | |
yield partial_text | |
demo = gr.ChatInterface(fn=chat, examples=["hello", "hola", "merhaba"], title="Gradient Cuff Vicuna-7B-V1.5") | |
demo.launch() |