initial commit
Browse files- .gitignore +1 -0
- README.md +3 -2
- app.py +40 -0
- lib/IRRA/image.py +23 -0
- lib/IRRA/model/__init__.py +1 -0
- lib/IRRA/model/build.py +150 -0
- lib/IRRA/model/clip_model.py +602 -0
- lib/IRRA/model/objectives.py +119 -0
- lib/IRRA/tokenizer.py +153 -0
- lib/__init__.py +0 -0
- lib/components/__init__.py +0 -0
- lib/utils/model.py +31 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
README.md
CHANGED
@@ -9,5 +9,6 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# IRRA space
|
13 |
+
|
14 |
+
Space for Text-To-Image Person retrieval for the [IRRA](https://github.com/anosorae/IRRA/tree/main) model
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from lib.utils.model import get_model, get_similarities
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
st.title('IRRA Text-To-Image-Retrival')
|
6 |
+
|
7 |
+
st.header('Inputs')
|
8 |
+
caption = st.text_input('Description Input')
|
9 |
+
|
10 |
+
images = st.file_uploader('Upload images', accept_multiple_files=True)
|
11 |
+
if images is not None:
|
12 |
+
st.image(images) # type: ignore
|
13 |
+
|
14 |
+
st.header('Options')
|
15 |
+
st.subheader('Ranks')
|
16 |
+
|
17 |
+
ranks = st.slider('slider_ranks', min_value=1, max_value=10, label_visibility='collapsed',value=5)
|
18 |
+
|
19 |
+
button = st.button('Match most similar', disabled=len(images) == 0 or caption == '')
|
20 |
+
|
21 |
+
if button:
|
22 |
+
st.header('Results')
|
23 |
+
with st.spinner('Loading model'):
|
24 |
+
model = get_model()
|
25 |
+
|
26 |
+
st.text(f'IRRA model loaded with {sum(p.numel() for p in model.parameters()) / 1e6:.0f}M parameters')
|
27 |
+
|
28 |
+
with st.spinner('Computing and ranking similarities'):
|
29 |
+
similarities = get_similarities(caption, images, model)
|
30 |
+
|
31 |
+
indices = similarities.argsort(descending=True).squeeze(0).cpu().tolist()[:ranks]
|
32 |
+
|
33 |
+
for i, idx in enumerate(indices):
|
34 |
+
c1, c2 = st.columns(2)
|
35 |
+
with c1:
|
36 |
+
st.text(f'Rank {i + 1}')
|
37 |
+
with c2:
|
38 |
+
st.image(images[idx])
|
39 |
+
|
40 |
+
|
lib/IRRA/image.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as T
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
def prepare_images(files: list[str]):
|
7 |
+
mean = [0.48145466, 0.4578275, 0.40821073]
|
8 |
+
std = [0.26862954, 0.26130258, 0.27577711]
|
9 |
+
|
10 |
+
transforms = T.Compose([
|
11 |
+
T.Resize((384, 128)),
|
12 |
+
T.RandomHorizontalFlip(0.5),
|
13 |
+
T.ToTensor(),
|
14 |
+
T.Normalize(mean=mean, std=std),
|
15 |
+
])
|
16 |
+
|
17 |
+
tensors = []
|
18 |
+
for file in files:
|
19 |
+
tensors.append(transforms(Image.open(file).convert('RGB')).unsqueeze(0))
|
20 |
+
|
21 |
+
return torch.cat(tensors, dim=0)
|
22 |
+
|
23 |
+
|
lib/IRRA/model/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .build import build_model
|
lib/IRRA/model/build.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import objectives
|
2 |
+
from .clip_model import Transformer, QuickGELU, LayerNorm, build_CLIP_from_openai_pretrained, convert_weights
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
|
9 |
+
class IRRA(nn.Module):
|
10 |
+
def __init__(self, args, num_classes=11003):
|
11 |
+
super().__init__()
|
12 |
+
self.args = args
|
13 |
+
self.num_classes = num_classes
|
14 |
+
self._set_task()
|
15 |
+
|
16 |
+
self.base_model, base_cfg = build_CLIP_from_openai_pretrained(args.pretrain_choice, args.img_size, args.stride_size)
|
17 |
+
self.embed_dim = base_cfg['embed_dim']
|
18 |
+
|
19 |
+
self.logit_scale = torch.ones([]) * (1 / args.temperature)
|
20 |
+
|
21 |
+
if 'id' in args.loss_names:
|
22 |
+
self.classifier = nn.Linear(self.embed_dim, self.num_classes)
|
23 |
+
nn.init.normal_(self.classifier.weight.data, std=0.001)
|
24 |
+
nn.init.constant_(self.classifier.bias.data, val=0.0)
|
25 |
+
|
26 |
+
if 'mlm' in args.loss_names:
|
27 |
+
self.cross_attn = nn.MultiheadAttention(self.embed_dim,
|
28 |
+
self.embed_dim // 64,
|
29 |
+
batch_first=True)
|
30 |
+
self.cross_modal_transformer = Transformer(width=self.embed_dim,
|
31 |
+
layers=args.cmt_depth,
|
32 |
+
heads=self.embed_dim //
|
33 |
+
64)
|
34 |
+
scale = self.cross_modal_transformer.width**-0.5
|
35 |
+
|
36 |
+
self.ln_pre_t = LayerNorm(self.embed_dim)
|
37 |
+
self.ln_pre_i = LayerNorm(self.embed_dim)
|
38 |
+
self.ln_post = LayerNorm(self.embed_dim)
|
39 |
+
|
40 |
+
proj_std = scale * ((2 * self.cross_modal_transformer.layers)**-0.5)
|
41 |
+
attn_std = scale
|
42 |
+
fc_std = (2 * self.cross_modal_transformer.width)**-0.5
|
43 |
+
for block in self.cross_modal_transformer.resblocks:
|
44 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
45 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
46 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
47 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
48 |
+
|
49 |
+
# init cross attn
|
50 |
+
nn.init.normal_(self.cross_attn.in_proj_weight, std=attn_std)
|
51 |
+
nn.init.normal_(self.cross_attn.out_proj.weight, std=proj_std)
|
52 |
+
|
53 |
+
self.mlm_head = nn.Sequential(
|
54 |
+
OrderedDict([('dense', nn.Linear(self.embed_dim, self.embed_dim)),
|
55 |
+
('gelu', QuickGELU()),
|
56 |
+
('ln', LayerNorm(self.embed_dim)),
|
57 |
+
('fc', nn.Linear(self.embed_dim, args.vocab_size))]))
|
58 |
+
# init mlm head
|
59 |
+
nn.init.normal_(self.mlm_head.dense.weight, std=fc_std)
|
60 |
+
nn.init.normal_(self.mlm_head.fc.weight, std=proj_std)
|
61 |
+
|
62 |
+
def _set_task(self):
|
63 |
+
loss_names = self.args.loss_names
|
64 |
+
self.current_task = [l.strip() for l in loss_names.split('+')]
|
65 |
+
print(f'Training Model with {self.current_task} tasks')
|
66 |
+
|
67 |
+
|
68 |
+
def cross_former(self, q, k, v):
|
69 |
+
x = self.cross_attn(
|
70 |
+
self.ln_pre_t(q),
|
71 |
+
self.ln_pre_i(k),
|
72 |
+
self.ln_pre_i(v),
|
73 |
+
need_weights=False)[0]
|
74 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
75 |
+
x = self.cross_modal_transformer(x)
|
76 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
77 |
+
|
78 |
+
x = self.ln_post(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
def encode_image(self, image):
|
82 |
+
x = self.base_model.encode_image(image)
|
83 |
+
return x[:, 0, :].float()
|
84 |
+
# return x.float() # for CLIP ResNet visual model
|
85 |
+
|
86 |
+
def encode_text(self, text):
|
87 |
+
x = self.base_model.encode_text(text)
|
88 |
+
return x[torch.arange(x.shape[0]), text.argmax(dim=-1)].float()
|
89 |
+
|
90 |
+
def forward(self, batch):
|
91 |
+
ret = dict()
|
92 |
+
|
93 |
+
images = batch['images']
|
94 |
+
caption_ids = batch['caption_ids']
|
95 |
+
image_feats, text_feats = self.base_model(images, caption_ids)
|
96 |
+
i_feats = image_feats[:, 0, :].float()
|
97 |
+
# i_feats = image_feats.float() # for CLIP ResNet visual model
|
98 |
+
t_feats = text_feats[torch.arange(text_feats.shape[0]), caption_ids.argmax(dim=-1)].float()
|
99 |
+
|
100 |
+
logit_scale = self.logit_scale
|
101 |
+
ret.update({'temperature': 1 / logit_scale})
|
102 |
+
|
103 |
+
if 'itc' in self.current_task:
|
104 |
+
ret.update({'itc_loss':objectives.compute_itc(i_feats, t_feats, logit_scale)})
|
105 |
+
|
106 |
+
if 'sdm' in self.current_task:
|
107 |
+
ret.update({'sdm_loss':objectives.compute_sdm(i_feats, t_feats, batch['pids'], logit_scale)})
|
108 |
+
|
109 |
+
if 'cmpm' in self.current_task:
|
110 |
+
ret.update({'cmpm_loss':objectives.compute_cmpm(i_feats, t_feats, batch['pids'])})
|
111 |
+
|
112 |
+
if 'id' in self.current_task:
|
113 |
+
image_logits = self.classifier(i_feats.half()).float()
|
114 |
+
text_logits = self.classifier(t_feats.half()).float()
|
115 |
+
ret.update({'id_loss':objectives.compute_id(image_logits, text_logits, batch['pids'])*self.args.id_loss_weight})
|
116 |
+
|
117 |
+
image_pred = torch.argmax(image_logits, dim=1)
|
118 |
+
text_pred = torch.argmax(text_logits, dim=1)
|
119 |
+
|
120 |
+
image_precision = (image_pred == batch['pids']).float().mean()
|
121 |
+
text_precision = (text_pred == batch['pids']).float().mean()
|
122 |
+
ret.update({'img_acc': image_precision})
|
123 |
+
ret.update({'txt_acc': text_precision})
|
124 |
+
|
125 |
+
if 'mlm' in self.current_task:
|
126 |
+
mlm_ids = batch['mlm_ids']
|
127 |
+
|
128 |
+
mlm_feats = self.base_model.encode_text(mlm_ids)
|
129 |
+
|
130 |
+
x = self.cross_former(mlm_feats, image_feats, image_feats)
|
131 |
+
|
132 |
+
x = self.mlm_head(x) # [batch_size, text_len, num_colors]
|
133 |
+
|
134 |
+
scores = x.float().reshape(-1, self.args.vocab_size)
|
135 |
+
mlm_labels = batch['mlm_labels'].reshape(-1)
|
136 |
+
ret.update({'mlm_loss': objectives.compute_mlm(scores, mlm_labels)*self.args.mlm_loss_weight})
|
137 |
+
|
138 |
+
pred = scores.max(1)[1]
|
139 |
+
mlm_label_idx = torch.nonzero(mlm_labels)
|
140 |
+
acc = (pred[mlm_label_idx] == mlm_labels[mlm_label_idx]).float().mean()
|
141 |
+
ret.update({'mlm_acc': acc})
|
142 |
+
|
143 |
+
return ret
|
144 |
+
|
145 |
+
|
146 |
+
def build_model(args, num_classes=11003):
|
147 |
+
model = IRRA(args, num_classes)
|
148 |
+
# covert model to fp16
|
149 |
+
convert_weights(model)
|
150 |
+
return model
|
lib/IRRA/model/clip_model.py
ADDED
@@ -0,0 +1,602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" CLIP Model
|
2 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
3 |
+
"""
|
4 |
+
from collections import OrderedDict
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
from typing import List, Tuple, Union
|
9 |
+
import hashlib
|
10 |
+
import urllib
|
11 |
+
from tqdm import tqdm
|
12 |
+
import warnings
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torch import nn
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.getLogger("IRRA.model")
|
20 |
+
|
21 |
+
_MODELS = {
|
22 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
23 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
24 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
25 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
26 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
27 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
28 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
29 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
30 |
+
}
|
31 |
+
|
32 |
+
def available_models() -> List[str]:
|
33 |
+
"""Returns the names of available CLIP models"""
|
34 |
+
return list(_MODELS.keys())
|
35 |
+
|
36 |
+
def _download(url: str, root: str):
|
37 |
+
os.makedirs(root, exist_ok=True)
|
38 |
+
filename = os.path.basename(url)
|
39 |
+
|
40 |
+
expected_sha256 = url.split("/")[-2]
|
41 |
+
download_target = os.path.join(root, filename)
|
42 |
+
|
43 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
44 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
45 |
+
|
46 |
+
if os.path.isfile(download_target):
|
47 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
48 |
+
return download_target
|
49 |
+
else:
|
50 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
51 |
+
|
52 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
53 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
54 |
+
while True:
|
55 |
+
buffer = source.read(8192)
|
56 |
+
if not buffer:
|
57 |
+
break
|
58 |
+
|
59 |
+
output.write(buffer)
|
60 |
+
loop.update(len(buffer))
|
61 |
+
|
62 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
63 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
64 |
+
|
65 |
+
return download_target
|
66 |
+
|
67 |
+
|
68 |
+
class Bottleneck(nn.Module):
|
69 |
+
expansion = 4
|
70 |
+
|
71 |
+
def __init__(self, inplanes, planes, stride=1):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
75 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
76 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
77 |
+
|
78 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
79 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
80 |
+
|
81 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
82 |
+
|
83 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
84 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
85 |
+
|
86 |
+
self.relu = nn.ReLU(inplace=True)
|
87 |
+
self.downsample = None
|
88 |
+
self.stride = stride
|
89 |
+
|
90 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
91 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
92 |
+
self.downsample = nn.Sequential(OrderedDict([
|
93 |
+
("-1", nn.AvgPool2d(stride)),
|
94 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
95 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
96 |
+
]))
|
97 |
+
|
98 |
+
def forward(self, x: torch.Tensor):
|
99 |
+
identity = x
|
100 |
+
|
101 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
102 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
103 |
+
out = self.avgpool(out)
|
104 |
+
out = self.bn3(self.conv3(out))
|
105 |
+
|
106 |
+
if self.downsample is not None:
|
107 |
+
identity = self.downsample(x)
|
108 |
+
|
109 |
+
out += identity
|
110 |
+
out = self.relu(out)
|
111 |
+
return out
|
112 |
+
|
113 |
+
|
114 |
+
class AttentionPool2d(nn.Module):
|
115 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
116 |
+
super().__init__()
|
117 |
+
# self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
118 |
+
self.positional_embedding = nn.Parameter(torch.randn((spacial_dim[0] * spacial_dim[1]) + 1, embed_dim)/ embed_dim ** 0.5)
|
119 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
120 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
121 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
122 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
123 |
+
self.num_heads = num_heads
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
127 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
128 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
129 |
+
x, _ = F.multi_head_attention_forward(
|
130 |
+
query=x, key=x, value=x,
|
131 |
+
embed_dim_to_check=x.shape[-1],
|
132 |
+
num_heads=self.num_heads,
|
133 |
+
q_proj_weight=self.q_proj.weight,
|
134 |
+
k_proj_weight=self.k_proj.weight,
|
135 |
+
v_proj_weight=self.v_proj.weight,
|
136 |
+
in_proj_weight=None,
|
137 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
138 |
+
bias_k=None,
|
139 |
+
bias_v=None,
|
140 |
+
add_zero_attn=False,
|
141 |
+
dropout_p=0,
|
142 |
+
out_proj_weight=self.c_proj.weight,
|
143 |
+
out_proj_bias=self.c_proj.bias,
|
144 |
+
use_separate_proj_weight=True,
|
145 |
+
training=self.training,
|
146 |
+
need_weights=False
|
147 |
+
)
|
148 |
+
|
149 |
+
return x[0]
|
150 |
+
|
151 |
+
|
152 |
+
class ModifiedResNet(nn.Module):
|
153 |
+
"""
|
154 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
155 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
156 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
157 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
161 |
+
super().__init__()
|
162 |
+
self.output_dim = output_dim
|
163 |
+
self.input_resolution = input_resolution
|
164 |
+
|
165 |
+
# the 3-layer stem
|
166 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
167 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
168 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
169 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
170 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
171 |
+
self.bn3 = nn.BatchNorm2d(width)
|
172 |
+
self.avgpool = nn.AvgPool2d(2)
|
173 |
+
self.relu = nn.ReLU(inplace=True)
|
174 |
+
|
175 |
+
# residual layers
|
176 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
177 |
+
self.layer1 = self._make_layer(width, layers[0])
|
178 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
179 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
180 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
181 |
+
|
182 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
183 |
+
spacial_dim = (
|
184 |
+
input_resolution[0] // 32,
|
185 |
+
input_resolution[1] // 32,
|
186 |
+
)
|
187 |
+
self.attnpool = AttentionPool2d(spacial_dim, embed_dim, heads, output_dim)
|
188 |
+
|
189 |
+
def _make_layer(self, planes, blocks, stride=1):
|
190 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
191 |
+
|
192 |
+
self._inplanes = planes * Bottleneck.expansion
|
193 |
+
for _ in range(1, blocks):
|
194 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
195 |
+
|
196 |
+
return nn.Sequential(*layers)
|
197 |
+
|
198 |
+
def forward(self, x):
|
199 |
+
def stem(x):
|
200 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
201 |
+
x = self.relu(bn(conv(x)))
|
202 |
+
x = self.avgpool(x)
|
203 |
+
return x
|
204 |
+
|
205 |
+
x = x.type(self.conv1.weight.dtype)
|
206 |
+
x = stem(x)
|
207 |
+
x = self.layer1(x)
|
208 |
+
x = self.layer2(x)
|
209 |
+
x = self.layer3(x)
|
210 |
+
x = self.layer4(x)
|
211 |
+
x = self.attnpool(x)
|
212 |
+
|
213 |
+
return x
|
214 |
+
|
215 |
+
|
216 |
+
class LayerNorm(nn.LayerNorm):
|
217 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
218 |
+
|
219 |
+
def forward(self, x: torch.Tensor):
|
220 |
+
orig_type = x.dtype
|
221 |
+
ret = super().forward(x.type(torch.float32))
|
222 |
+
return ret.type(orig_type)
|
223 |
+
|
224 |
+
|
225 |
+
class QuickGELU(nn.Module):
|
226 |
+
def forward(self, x: torch.Tensor):
|
227 |
+
return x * torch.sigmoid(1.702 * x)
|
228 |
+
|
229 |
+
|
230 |
+
class ResidualAttentionBlock(nn.Module):
|
231 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
232 |
+
super().__init__()
|
233 |
+
|
234 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
235 |
+
self.ln_1 = LayerNorm(d_model)
|
236 |
+
self.mlp = nn.Sequential(OrderedDict([
|
237 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
238 |
+
("gelu", QuickGELU()),
|
239 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
240 |
+
]))
|
241 |
+
self.ln_2 = LayerNorm(d_model)
|
242 |
+
self.attn_mask = attn_mask
|
243 |
+
|
244 |
+
def attention(self, x: torch.Tensor):
|
245 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
246 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
247 |
+
|
248 |
+
def forward(self, x: torch.Tensor):
|
249 |
+
x = x + self.attention(self.ln_1(x))
|
250 |
+
x = x + self.mlp(self.ln_2(x))
|
251 |
+
return x
|
252 |
+
|
253 |
+
|
254 |
+
class Transformer(nn.Module):
|
255 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
256 |
+
super().__init__()
|
257 |
+
self.width = width
|
258 |
+
self.layers = layers
|
259 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
260 |
+
|
261 |
+
def forward(self, x: torch.Tensor):
|
262 |
+
return self.resblocks(x)
|
263 |
+
|
264 |
+
|
265 |
+
class VisionTransformer(nn.Module):
|
266 |
+
def __init__(self, input_resolution: Tuple[int, int], patch_size: int, stride_size: int, width: int, layers: int, heads: int, output_dim: int):
|
267 |
+
super().__init__()
|
268 |
+
self.input_resolution = input_resolution # (384, 128)
|
269 |
+
self.num_x = (input_resolution[1] - patch_size) // stride_size + 1
|
270 |
+
self.num_y = (input_resolution[0] - patch_size) // stride_size + 1
|
271 |
+
num_patches = self.num_x * self.num_y
|
272 |
+
|
273 |
+
self.output_dim = output_dim
|
274 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=stride_size, bias=False)
|
275 |
+
|
276 |
+
scale = width ** -0.5 # 1/sqrt(768)
|
277 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
278 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(num_patches + 1, width))
|
279 |
+
self.ln_pre = LayerNorm(width)
|
280 |
+
|
281 |
+
self.transformer = Transformer(width, layers, heads)
|
282 |
+
|
283 |
+
self.ln_post = LayerNorm(width)
|
284 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
285 |
+
|
286 |
+
|
287 |
+
def forward(self, x: torch.Tensor):
|
288 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
289 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
290 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
291 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
292 |
+
x = x + self.positional_embedding.to(x.dtype)
|
293 |
+
x = self.ln_pre(x)
|
294 |
+
|
295 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
296 |
+
x = self.transformer(x)
|
297 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
298 |
+
|
299 |
+
# x = self.ln_post(x[:, 0, :])
|
300 |
+
x = self.ln_post(x)
|
301 |
+
|
302 |
+
if self.proj is not None:
|
303 |
+
x = x @ self.proj
|
304 |
+
|
305 |
+
return x
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
class CLIP(nn.Module):
|
310 |
+
def __init__(self,
|
311 |
+
embed_dim: int,
|
312 |
+
# vision
|
313 |
+
image_resolution: Union[int, Tuple[int, int]],
|
314 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
315 |
+
vision_width: int,
|
316 |
+
vision_patch_size: int,
|
317 |
+
stride_size: int,
|
318 |
+
# text
|
319 |
+
context_length: int,
|
320 |
+
vocab_size: int,
|
321 |
+
transformer_width: int,
|
322 |
+
transformer_heads: int,
|
323 |
+
transformer_layers: int
|
324 |
+
):
|
325 |
+
super().__init__()
|
326 |
+
|
327 |
+
self.context_length = context_length
|
328 |
+
|
329 |
+
if isinstance(vision_layers, (tuple, list)):
|
330 |
+
vision_heads = vision_width * 32 // 64
|
331 |
+
self.visual = ModifiedResNet(
|
332 |
+
layers=vision_layers,
|
333 |
+
output_dim=embed_dim,
|
334 |
+
heads=vision_heads,
|
335 |
+
input_resolution=image_resolution,
|
336 |
+
width=vision_width
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
vision_heads = vision_width // 64
|
340 |
+
self.visual = VisionTransformer(
|
341 |
+
input_resolution=image_resolution,
|
342 |
+
patch_size=vision_patch_size,
|
343 |
+
stride_size=stride_size,
|
344 |
+
width=vision_width,
|
345 |
+
layers=vision_layers,
|
346 |
+
heads=vision_heads,
|
347 |
+
output_dim=embed_dim
|
348 |
+
)
|
349 |
+
|
350 |
+
self.transformer = Transformer(
|
351 |
+
width=transformer_width,
|
352 |
+
layers=transformer_layers,
|
353 |
+
heads=transformer_heads,
|
354 |
+
attn_mask=self.build_attention_mask()
|
355 |
+
)
|
356 |
+
|
357 |
+
self.vocab_size = vocab_size
|
358 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
359 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
360 |
+
self.ln_final = LayerNorm(transformer_width)
|
361 |
+
|
362 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
363 |
+
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
364 |
+
|
365 |
+
self.initialize_parameters()
|
366 |
+
|
367 |
+
def initialize_parameters(self):
|
368 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
369 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
370 |
+
|
371 |
+
if isinstance(self.visual, ModifiedResNet):
|
372 |
+
if self.visual.attnpool is not None:
|
373 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
374 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
375 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
376 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
377 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
378 |
+
|
379 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
380 |
+
for name, param in resnet_block.named_parameters():
|
381 |
+
if name.endswith("bn3.weight"):
|
382 |
+
nn.init.zeros_(param)
|
383 |
+
|
384 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
385 |
+
attn_std = self.transformer.width ** -0.5
|
386 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
387 |
+
for block in self.transformer.resblocks:
|
388 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
389 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
390 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
391 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
392 |
+
|
393 |
+
if self.text_projection is not None:
|
394 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
395 |
+
|
396 |
+
def build_attention_mask(self):
|
397 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
398 |
+
# pytorch uses additive attention mask; fill with -inf
|
399 |
+
mask = torch.empty(self.context_length, self.context_length)
|
400 |
+
mask.fill_(float("-inf"))
|
401 |
+
mask.triu_(1) # zero out the lower diagonal
|
402 |
+
return mask
|
403 |
+
|
404 |
+
@property
|
405 |
+
def dtype(self):
|
406 |
+
return self.visual.conv1.weight.dtype
|
407 |
+
|
408 |
+
def encode_image(self, image):
|
409 |
+
return self.visual(image.type(self.dtype))
|
410 |
+
|
411 |
+
def encode_text(self, text):
|
412 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
413 |
+
|
414 |
+
x = x + self.positional_embedding.type(self.dtype)
|
415 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
416 |
+
x = self.transformer(x)
|
417 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
418 |
+
x = self.ln_final(x).type(self.dtype)
|
419 |
+
|
420 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
421 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
422 |
+
# x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
423 |
+
x = x @ self.text_projection
|
424 |
+
|
425 |
+
return x
|
426 |
+
|
427 |
+
def forward(self, image, text):
|
428 |
+
image_features = self.encode_image(image)
|
429 |
+
text_features = self.encode_text(text)
|
430 |
+
|
431 |
+
# # normalized features
|
432 |
+
# image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
433 |
+
# text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
434 |
+
|
435 |
+
# # cosine similarity as logits
|
436 |
+
# logit_scale = self.logit_scale.exp()
|
437 |
+
# logits_per_image = logit_scale * image_features @ text_features.t()
|
438 |
+
# logits_per_text = logits_per_image.t()
|
439 |
+
|
440 |
+
# # shape = [global_batch_size, global_batch_size]
|
441 |
+
# return logits_per_image, logits_per_text
|
442 |
+
|
443 |
+
return image_features, text_features
|
444 |
+
|
445 |
+
|
446 |
+
def load_param(self, state_dict):
|
447 |
+
# 将pretrained_dict里不属于model_dict的键剔除掉
|
448 |
+
param_dict = {k: v for k, v in state_dict.items() if k in self.state_dict()}
|
449 |
+
|
450 |
+
if 'model' in param_dict:
|
451 |
+
param_dict = param_dict['model']
|
452 |
+
if 'state_dict' in param_dict:
|
453 |
+
param_dict = param_dict['state_dict']
|
454 |
+
for k, v in param_dict.items():
|
455 |
+
if k == 'visual.positional_embedding' and v.shape != self.visual.positional_embedding.shape:
|
456 |
+
v = resize_pos_embed(v, self.visual.positional_embedding, self.visual.num_y, self.visual.num_x)
|
457 |
+
elif k == 'positional_embedding' and v.shape != self.positional_embedding.shape:
|
458 |
+
v = resize_text_pos_embed(v, self.context_length)
|
459 |
+
try:
|
460 |
+
self.state_dict()[k].copy_(v)
|
461 |
+
except:
|
462 |
+
print(f'===========================ERROR occur in copy {k}, {v.shape}=========================')
|
463 |
+
print('shape do not match in k :{}: param_dict{} vs self.state_dict(){}'.format(k, v.shape, self.state_dict()[k].shape))
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
def resize_pos_embed(posemb, posemb_new, hight, width):
|
468 |
+
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
|
469 |
+
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
|
470 |
+
posemb = posemb.unsqueeze(0)
|
471 |
+
posemb_new = posemb_new.unsqueeze(0)
|
472 |
+
|
473 |
+
posemb_token, posemb_grid = posemb[:, :1], posemb[0, 1:]
|
474 |
+
|
475 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
476 |
+
print('Resized position embedding from size:{} to size: {} with height:{} width: {}'.format(posemb.shape, posemb_new.shape, hight, width))
|
477 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
478 |
+
posemb_grid = F.interpolate(posemb_grid, size=(hight, width), mode='bilinear')
|
479 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, hight * width, -1)
|
480 |
+
posemb = torch.cat([posemb_token, posemb_grid], dim=1)
|
481 |
+
return posemb.squeeze(0)
|
482 |
+
|
483 |
+
|
484 |
+
def convert_weights(model: nn.Module):
|
485 |
+
"""Convert applicable model parameters to fp16"""
|
486 |
+
|
487 |
+
def _convert_weights_to_fp16(l):
|
488 |
+
# if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
489 |
+
# l.weight.data = l.weight.data.half()
|
490 |
+
# if l.bias is not None:
|
491 |
+
# l.bias.data = l.bias.data.half()
|
492 |
+
|
493 |
+
# if isinstance(l, nn.MultiheadAttention):
|
494 |
+
# for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
495 |
+
# tensor = getattr(l, attr)
|
496 |
+
# if tensor is not None:
|
497 |
+
# tensor.data = tensor.data.half()
|
498 |
+
|
499 |
+
# for name in ["text_projection", "proj", "mcq_proj"]:
|
500 |
+
# if hasattr(l, name):
|
501 |
+
# attr = getattr(l, name)
|
502 |
+
# if attr is not None:
|
503 |
+
# attr.data = attr.data.half()
|
504 |
+
...
|
505 |
+
|
506 |
+
model.apply(_convert_weights_to_fp16)
|
507 |
+
|
508 |
+
|
509 |
+
def build_CLIP_from_openai_pretrained(name: str, image_size: Union[int, Tuple[int, int]], stride_size: int, jit: bool = False, download_root: str = None):
|
510 |
+
"""Load a CLIP model
|
511 |
+
|
512 |
+
Parameters
|
513 |
+
----------
|
514 |
+
name : str
|
515 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
516 |
+
|
517 |
+
image_size: Union[int, Tuple[int, int]]
|
518 |
+
Input image size, in Re-ID task, image size commonly set to 384x128, instead of 224x224
|
519 |
+
|
520 |
+
jit : bool
|
521 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
522 |
+
|
523 |
+
download_root: str
|
524 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
525 |
+
|
526 |
+
Returns
|
527 |
+
-------
|
528 |
+
model : torch.nn.Module
|
529 |
+
The CLIP model
|
530 |
+
"""
|
531 |
+
if name in _MODELS:
|
532 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
533 |
+
elif os.path.isfile(name):
|
534 |
+
model_path = name
|
535 |
+
else:
|
536 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
537 |
+
|
538 |
+
try:
|
539 |
+
# loading JIT archive
|
540 |
+
model = torch.jit.load(model_path, map_location="cpu")
|
541 |
+
state_dict = None
|
542 |
+
except RuntimeError:
|
543 |
+
# loading saved state dict
|
544 |
+
if jit:
|
545 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
546 |
+
jit = False
|
547 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
548 |
+
|
549 |
+
state_dict = state_dict or model.state_dict()
|
550 |
+
|
551 |
+
vit = "visual.proj" in state_dict
|
552 |
+
|
553 |
+
if vit:
|
554 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
555 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
556 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
557 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
558 |
+
image_resolution = vision_patch_size * grid_size
|
559 |
+
else:
|
560 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
561 |
+
vision_layers = tuple(counts)
|
562 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
563 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
564 |
+
vision_patch_size = None
|
565 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
566 |
+
image_resolution = output_width * 32
|
567 |
+
|
568 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
569 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
570 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
571 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
572 |
+
transformer_heads = transformer_width // 64
|
573 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
574 |
+
|
575 |
+
model_cfg = {
|
576 |
+
'embed_dim': embed_dim,
|
577 |
+
'image_resolution': image_resolution,
|
578 |
+
'vision_layers': vision_layers,
|
579 |
+
'vision_width': vision_width,
|
580 |
+
'vision_patch_size': vision_patch_size,
|
581 |
+
'context_length': context_length,
|
582 |
+
'vocab_size': vocab_size,
|
583 |
+
'transformer_width': transformer_width,
|
584 |
+
'transformer_heads': transformer_heads,
|
585 |
+
'transformer_layers': transformer_layers
|
586 |
+
}
|
587 |
+
|
588 |
+
|
589 |
+
# modify image resolution to adapt Re-ID task
|
590 |
+
model_cfg['image_resolution'] = image_size
|
591 |
+
model_cfg['stride_size'] = stride_size
|
592 |
+
logger.info(f"Load pretrained {name} CLIP model with model config: {model_cfg}")
|
593 |
+
model = CLIP(**model_cfg)
|
594 |
+
|
595 |
+
# covert model to fp16
|
596 |
+
# convert_weights(model)
|
597 |
+
|
598 |
+
# resize modified pos embedding
|
599 |
+
model.load_param(state_dict)
|
600 |
+
return model, model_cfg
|
601 |
+
|
602 |
+
|
lib/IRRA/model/objectives.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def compute_sdm(image_fetures, text_fetures, pid, logit_scale, image_id=None, factor=0.3, epsilon=1e-8):
|
7 |
+
"""
|
8 |
+
Similarity Distribution Matching
|
9 |
+
"""
|
10 |
+
batch_size = image_fetures.shape[0]
|
11 |
+
pid = pid.reshape((batch_size, 1)) # make sure pid size is [batch_size, 1]
|
12 |
+
pid_dist = pid - pid.t()
|
13 |
+
labels = (pid_dist == 0).float()
|
14 |
+
|
15 |
+
if image_id != None:
|
16 |
+
# print("Mix PID and ImageID to create soft label.")
|
17 |
+
image_id = image_id.reshape((-1, 1))
|
18 |
+
image_id_dist = image_id - image_id.t()
|
19 |
+
image_id_mask = (image_id_dist == 0).float()
|
20 |
+
labels = (labels - image_id_mask) * factor + image_id_mask
|
21 |
+
# labels = (labels + image_id_mask) / 2
|
22 |
+
|
23 |
+
image_norm = image_fetures / image_fetures.norm(dim=1, keepdim=True)
|
24 |
+
text_norm = text_fetures / text_fetures.norm(dim=1, keepdim=True)
|
25 |
+
|
26 |
+
t2i_cosine_theta = text_norm @ image_norm.t()
|
27 |
+
i2t_cosine_theta = t2i_cosine_theta.t()
|
28 |
+
|
29 |
+
text_proj_image = logit_scale * t2i_cosine_theta
|
30 |
+
image_proj_text = logit_scale * i2t_cosine_theta
|
31 |
+
|
32 |
+
# normalize the true matching distribution
|
33 |
+
labels_distribute = labels / labels.sum(dim=1)
|
34 |
+
|
35 |
+
i2t_pred = F.softmax(image_proj_text, dim=1)
|
36 |
+
i2t_loss = i2t_pred * (F.log_softmax(image_proj_text, dim=1) - torch.log(labels_distribute + epsilon))
|
37 |
+
t2i_pred = F.softmax(text_proj_image, dim=1)
|
38 |
+
t2i_loss = t2i_pred * (F.log_softmax(text_proj_image, dim=1) - torch.log(labels_distribute + epsilon))
|
39 |
+
|
40 |
+
loss = torch.mean(torch.sum(i2t_loss, dim=1)) + torch.mean(torch.sum(t2i_loss, dim=1))
|
41 |
+
|
42 |
+
return loss
|
43 |
+
|
44 |
+
|
45 |
+
def compute_mlm(scores, labels):
|
46 |
+
ce = nn.CrossEntropyLoss(ignore_index=0)
|
47 |
+
return ce(scores, labels)
|
48 |
+
|
49 |
+
|
50 |
+
def compute_itc(image_features, text_features, logit_scale):
|
51 |
+
"""
|
52 |
+
image-text contrastive (ITC) loss, InfoNCE
|
53 |
+
"""
|
54 |
+
batch_size = image_features.shape[0]
|
55 |
+
labels = torch.arange(start=0, end=batch_size, dtype=torch.int64)
|
56 |
+
labels = labels.to(image_features.device)
|
57 |
+
|
58 |
+
|
59 |
+
# normalized features
|
60 |
+
image_norm = image_features / image_features.norm(dim=-1, keepdim=True)
|
61 |
+
text_norm = text_features / text_features.norm(dim=-1, keepdim=True)
|
62 |
+
|
63 |
+
# cosine similarity as logits
|
64 |
+
logits_per_image = logit_scale * image_norm @ text_norm.t()
|
65 |
+
logits_per_text = logits_per_image.t()
|
66 |
+
|
67 |
+
loss_i = F.cross_entropy(logits_per_image, labels)
|
68 |
+
loss_t =F.cross_entropy(logits_per_text, labels)
|
69 |
+
loss = (loss_i + loss_t)/2
|
70 |
+
|
71 |
+
return loss
|
72 |
+
|
73 |
+
|
74 |
+
def compute_id(image_logits, text_logits, labels):
|
75 |
+
"""
|
76 |
+
Instance loss proposed at http://arxiv.org/abs/1711.05535
|
77 |
+
"""
|
78 |
+
criterion = nn.CrossEntropyLoss(reduction="mean")
|
79 |
+
|
80 |
+
loss = criterion(image_logits, labels) + criterion(text_logits, labels)
|
81 |
+
|
82 |
+
return loss / 2
|
83 |
+
|
84 |
+
|
85 |
+
def compute_cmpm(image_embeddings, text_embeddings, labels, epsilon=1e-8):
|
86 |
+
"""
|
87 |
+
Cross-Modal Projection Matching Loss(CMPM)
|
88 |
+
:param image_embeddings: Tensor with dtype torch.float32
|
89 |
+
:param text_embeddings: Tensor with dtype torch.float32
|
90 |
+
:param labels: Tensor with dtype torch.int32
|
91 |
+
:return:
|
92 |
+
i2t_loss: cmpm loss for image projected to text
|
93 |
+
t2i_loss: cmpm loss for text projected to image
|
94 |
+
pos_avg_sim: average cosine-similarity for positive pairs
|
95 |
+
neg_avg_sim: averate cosine-similarity for negative pairs
|
96 |
+
"""
|
97 |
+
|
98 |
+
batch_size = image_embeddings.shape[0]
|
99 |
+
labels_reshape = torch.reshape(labels, (batch_size, 1))
|
100 |
+
labels_dist = labels_reshape - labels_reshape.t()
|
101 |
+
labels_mask = (labels_dist == 0).float()
|
102 |
+
|
103 |
+
image_norm = image_embeddings / image_embeddings.norm(dim=1, keepdim=True)
|
104 |
+
text_norm = text_embeddings / text_embeddings.norm(dim=1, keepdim=True)
|
105 |
+
image_proj_text = torch.matmul(image_embeddings, text_norm.t())
|
106 |
+
text_proj_image = torch.matmul(text_embeddings, image_norm.t())
|
107 |
+
|
108 |
+
# normalize the true matching distribution
|
109 |
+
labels_mask_norm = labels_mask / labels_mask.norm(dim=1)
|
110 |
+
|
111 |
+
i2t_pred = F.softmax(image_proj_text, dim=1)
|
112 |
+
i2t_loss = i2t_pred * (F.log_softmax(image_proj_text, dim=1) - torch.log(labels_mask_norm + epsilon))
|
113 |
+
t2i_pred = F.softmax(text_proj_image, dim=1)
|
114 |
+
t2i_loss = t2i_pred * (F.log_softmax(text_proj_image, dim=1) - torch.log(labels_mask_norm + epsilon))
|
115 |
+
|
116 |
+
cmpm_loss = torch.mean(torch.sum(i2t_loss, dim=1)) + torch.mean(torch.sum(t2i_loss, dim=1))
|
117 |
+
|
118 |
+
return cmpm_loss
|
119 |
+
|
lib/IRRA/tokenizer.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
@lru_cache()
|
12 |
+
def default_bpe():
|
13 |
+
return "./model/bpe_simple_vocab_16e6.txt.gz"
|
14 |
+
|
15 |
+
|
16 |
+
@lru_cache()
|
17 |
+
def bytes_to_unicode():
|
18 |
+
"""
|
19 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
20 |
+
The reversible bpe codes work on unicode strings.
|
21 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
22 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
23 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
24 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
25 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
26 |
+
"""
|
27 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
28 |
+
cs = bs[:]
|
29 |
+
n = 0
|
30 |
+
for b in range(2**8):
|
31 |
+
if b not in bs:
|
32 |
+
bs.append(b)
|
33 |
+
cs.append(2**8+n)
|
34 |
+
n += 1
|
35 |
+
cs = [chr(n) for n in cs]
|
36 |
+
return dict(zip(bs, cs))
|
37 |
+
|
38 |
+
|
39 |
+
def get_pairs(word):
|
40 |
+
"""Return set of symbol pairs in a word.
|
41 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
42 |
+
"""
|
43 |
+
pairs = set()
|
44 |
+
prev_char = word[0]
|
45 |
+
for char in word[1:]:
|
46 |
+
pairs.add((prev_char, char))
|
47 |
+
prev_char = char
|
48 |
+
return pairs
|
49 |
+
|
50 |
+
|
51 |
+
def basic_clean(text):
|
52 |
+
text = ftfy.fix_text(text)
|
53 |
+
text = html.unescape(html.unescape(text))
|
54 |
+
return text.strip()
|
55 |
+
|
56 |
+
|
57 |
+
def whitespace_clean(text):
|
58 |
+
text = re.sub(r'\s+', ' ', text)
|
59 |
+
text = text.strip()
|
60 |
+
return text
|
61 |
+
|
62 |
+
|
63 |
+
class SimpleTokenizer(object):
|
64 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
65 |
+
self.byte_encoder = bytes_to_unicode()
|
66 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
67 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
68 |
+
merges = merges[1:49152-256-2+1]
|
69 |
+
merges = [tuple(merge.split()) for merge in merges]
|
70 |
+
vocab = list(bytes_to_unicode().values())
|
71 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
72 |
+
for merge in merges:
|
73 |
+
vocab.append(''.join(merge))
|
74 |
+
|
75 |
+
vocab.pop(-1) # remove last one in vocab(jekyll) to keep vocab_size unchanged
|
76 |
+
vocab.extend(['<|mask|>', '<|startoftext|>', '<|endoftext|>']) # vocab_size 49408
|
77 |
+
# vocab.extend(['<|startoftext|>', '<|endoftext|>']) # vocab_size 49408
|
78 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
79 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
80 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
81 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|mask|>': '<|mask|>', '<|endoftext|>': '<|endoftext|>'}
|
82 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|mask\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
83 |
+
|
84 |
+
def bpe(self, token):
|
85 |
+
if token in self.cache:
|
86 |
+
return self.cache[token]
|
87 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
88 |
+
pairs = get_pairs(word)
|
89 |
+
|
90 |
+
if not pairs:
|
91 |
+
return token+'</w>'
|
92 |
+
|
93 |
+
while True:
|
94 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
95 |
+
if bigram not in self.bpe_ranks:
|
96 |
+
break
|
97 |
+
first, second = bigram
|
98 |
+
new_word = []
|
99 |
+
i = 0
|
100 |
+
while i < len(word):
|
101 |
+
try:
|
102 |
+
j = word.index(first, i)
|
103 |
+
new_word.extend(word[i:j])
|
104 |
+
i = j
|
105 |
+
except:
|
106 |
+
new_word.extend(word[i:])
|
107 |
+
break
|
108 |
+
|
109 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
110 |
+
new_word.append(first+second)
|
111 |
+
i += 2
|
112 |
+
else:
|
113 |
+
new_word.append(word[i])
|
114 |
+
i += 1
|
115 |
+
new_word = tuple(new_word)
|
116 |
+
word = new_word
|
117 |
+
if len(word) == 1:
|
118 |
+
break
|
119 |
+
else:
|
120 |
+
pairs = get_pairs(word)
|
121 |
+
word = ' '.join(word)
|
122 |
+
self.cache[token] = word
|
123 |
+
return word
|
124 |
+
|
125 |
+
def encode(self, text):
|
126 |
+
bpe_tokens = []
|
127 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
128 |
+
for token in re.findall(self.pat, text):
|
129 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
130 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
131 |
+
return bpe_tokens
|
132 |
+
|
133 |
+
def decode(self, tokens):
|
134 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
135 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
136 |
+
return text
|
137 |
+
|
138 |
+
def tokenize(caption: str, tokenizer, text_length=77, truncate=True) -> torch.LongTensor:
|
139 |
+
sot_token = tokenizer.encoder["<|startoftext|>"]
|
140 |
+
eot_token = tokenizer.encoder["<|endoftext|>"]
|
141 |
+
tokens = [sot_token] + tokenizer.encode(caption) + [eot_token]
|
142 |
+
|
143 |
+
result = torch.zeros(text_length, dtype=torch.long)
|
144 |
+
if len(tokens) > text_length:
|
145 |
+
if truncate:
|
146 |
+
tokens = tokens[:text_length]
|
147 |
+
tokens[-1] = eot_token
|
148 |
+
else:
|
149 |
+
raise RuntimeError(
|
150 |
+
f"Input {caption} is too long for context length {text_length}"
|
151 |
+
)
|
152 |
+
result[:len(tokens)] = torch.tensor(tokens)
|
153 |
+
return result # type: ignore
|
lib/__init__.py
ADDED
File without changes
|
lib/components/__init__.py
ADDED
File without changes
|
lib/utils/model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yaml
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from lib.IRRA.tokenizer import tokenize, SimpleTokenizer
|
6 |
+
from lib.IRRA.image import prepare_images
|
7 |
+
from lib.IRRA.model.build import build_model, IRRA
|
8 |
+
|
9 |
+
from easydict import EasyDict
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def get_model():
|
13 |
+
args = yaml.load(open('model/configs.yaml'), Loader=yaml.FullLoader)
|
14 |
+
args = EasyDict(args)
|
15 |
+
args['training'] = False
|
16 |
+
|
17 |
+
model = build_model(args)
|
18 |
+
|
19 |
+
return model
|
20 |
+
|
21 |
+
def get_similarities(text: str, images: list[str], model: IRRA) -> torch.Tensor:
|
22 |
+
tokenizer = SimpleTokenizer()
|
23 |
+
|
24 |
+
txt = tokenize(text, tokenizer)
|
25 |
+
imgs = prepare_images(images)
|
26 |
+
|
27 |
+
print(imgs.shape)
|
28 |
+
image_feats = model.encode_image(imgs)
|
29 |
+
text_feats = model.encode_text(txt.unsqueeze(0))
|
30 |
+
|
31 |
+
return text_feats @ image_feats.t()
|