|
|
|
from model import get_model
|
|
|
|
import torch as T
|
|
import torch.nn.functional as F
|
|
from torchvision.transforms import v2
|
|
from fastapi import FastAPI, UploadFile, File
|
|
|
|
|
|
import json
|
|
import numpy as np
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
|
|
MODEL_IMAGE_WIDTH = 224
|
|
MODEL_IMAGE_HEIGHT = 224
|
|
|
|
transform = v2.Compose([
|
|
v2.Resize((MODEL_IMAGE_HEIGHT, MODEL_IMAGE_WIDTH)),
|
|
v2.ToTensor()
|
|
])
|
|
|
|
|
|
def load_image(image_data):
|
|
image = Image.open(BytesIO(image_data))
|
|
return image
|
|
|
|
def preprocess(image):
|
|
image = image.resize((MODEL_IMAGE_WIDTH, MODEL_IMAGE_HEIGHT))
|
|
image = transform(image)
|
|
|
|
return image
|
|
|
|
def get_prediction(image, model):
|
|
image = T.from_numpy(np.array(image))
|
|
print("image shape: ", image.shape)
|
|
|
|
image = image.unsqueeze(0)
|
|
|
|
print("batch size shape: ", image.shape)
|
|
|
|
pred_probs = model(image)
|
|
pred_probs = F.softmax(pred_probs, dim=-1)
|
|
pred_probs = pred_probs.detach().numpy()[0]
|
|
label = np.argmax(pred_probs, axis=-1)
|
|
|
|
return {
|
|
'pred_probs': pred_probs.tolist(),
|
|
'label': int(label)
|
|
}
|
|
|
|
|
|
|
|
|
|
app = FastAPI()
|
|
model = T.jit.load('model_script.pt')
|
|
|
|
@app.get("/")
|
|
def foo():
|
|
return {
|
|
"status": "Face Expression Classifier"
|
|
}
|
|
|
|
@app.post("/")
|
|
def bar():
|
|
return {
|
|
"status": "Response"
|
|
}
|
|
|
|
@app.post("/get_prediction")
|
|
async def predict(face_img: UploadFile = File(...)):
|
|
image = load_image(await face_img.read())
|
|
|
|
image = preprocess(image)
|
|
|
|
result = get_prediction(image, model)
|
|
print("Model Predicted: \n", result)
|
|
|
|
return {
|
|
'result': json.dumps(result)
|
|
}
|
|
|
|
@app.post("/test")
|
|
def test():
|
|
return {
|
|
'result': {
|
|
'pred_probs': [0.5, 0.2, 0.1],
|
|
'label': 0
|
|
}
|
|
} |