Spaces:
Sleeping
Sleeping
import torch | |
import json | |
import cv2 | |
from torchvision import models, transforms | |
import numpy as np | |
import streamlit as st | |
## face detector | |
face_cascade = cv2.CascadeClassifier("models/haarcascade_frontalface_alt.xml") | |
def face_detector(img): | |
img = np.asarray(img) | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
faces = face_cascade.detectMultiScale(gray) | |
return len(faces) > 0 | |
## preprocessing for pytorch models | |
def transform_img(img): | |
preprocess = transforms.Compose( | |
[ | |
transforms.Resize([224, 224]), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
] | |
) | |
return preprocess(img).unsqueeze(0) | |
## dog detector | |
VGG16 = models.vgg16(pretrained=True) | |
VGG16.eval() | |
def dog_detector(img): | |
pred_proba = VGG16(img).detach().numpy() | |
pred = np.argmax(pred_proba) | |
pred = 151 <= pred <= 268 | |
return pred | |
## breed | |
model_transfer = torch.load( | |
"models/model_transfer.pth", map_location=torch.device("cpu") | |
) | |
model_transfer.eval() | |
with open("models/classes.json", "r") as f: | |
class_names = json.load(f) | |
def predict_breed_transfer(img): | |
pred_proba = model_transfer(img) | |
_, pred = torch.topk(pred_proba, dim=1, k=1) | |
pred = str(pred.detach().numpy()[0][0]) | |
pred = class_names[pred] | |
return pred | |
## final predictor | |
def run_app(img): | |
human = face_detector(img) | |
img = transform_img(img) | |
dog = dog_detector(img) | |
if dog + human > 0: | |
dog_breed = predict_breed_transfer(img) | |
if dog: | |
st.header("hello, dog!") | |
else: | |
st.header("hello, human!") | |
st.header(f"You look like a {dog_breed}") | |
else: | |
st.header("um, what are you? Are you an alien!") | |