File size: 10,517 Bytes
1f77b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from __future__ import division

import torch 
import torch.nn as nn
import torch.nn.functional as F 
from torch.autograd import Variable
import numpy as np
import cv2 
import boto3
from io import BytesIO

def get_data_s3(filename):
    
    ACCESS_KEY = "AKIAUKUH7S3OIVOEIRWY"
    SECRET_KEY = "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"
    bucket = "root-models"

    s3 = boto3.client( "s3" , aws_access_key_id=ACCESS_KEY , aws_secret_access_key=SECRET_KEY )
    
    response = s3.get_object(Bucket=bucket, Key=filename)
    
    data = BytesIO( response["Body"].read() )

    return data

def parse_cfg_url(filename='yolov3.cfg'):

    data = get_data_s3(filename)

    lines = data.getvalue().decode().rstrip().lstrip().split('\n')     #store the lines in a list
    lines = [x.rstrip().lstrip() for x in lines]

    lines = [x for x in lines if len(x) > 0] #get read of the empty lines 
    lines = [x for x in lines if x[0] != '#']  
    lines = [x.rstrip().lstrip() for x in lines]

    
    block = {}
    blocks = []
    
    for line in lines:
        # print('line:' , line)
        if line[0] == "[":               #This marks the start of a new block
            if len(block) != 0:
                blocks.append(block)
                block = {}
            block["type"] = line[1:-1].rstrip()
        else:
            key,value = line.split("=")
            block[key.rstrip()] = value.lstrip()
    blocks.append(block)

    # print('blocks : 2 ' , blocks )

    return blocks



def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True):
    batch_size = prediction.size(0)
    stride =  inp_dim // prediction.size(2)
    grid_size = inp_dim // stride
    bbox_attrs = 5 + num_classes
    num_anchors = len(anchors)
    
    anchors = [(a[0]/stride, a[1]/stride) for a in anchors]



    prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size)
    prediction = prediction.transpose(1,2).contiguous()
    prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs)


    #Sigmoid the  centre_X, centre_Y. and object confidencce
    prediction[:,:,0] = torch.sigmoid(prediction[:,:,0])
    prediction[:,:,1] = torch.sigmoid(prediction[:,:,1])
    prediction[:,:,4] = torch.sigmoid(prediction[:,:,4])
    

    
    #Add the center offsets
    grid_len = np.arange(grid_size)
    a,b = np.meshgrid(grid_len, grid_len)
    
    x_offset = torch.FloatTensor(a).view(-1,1)
    y_offset = torch.FloatTensor(b).view(-1,1)
    
    if CUDA:
        x_offset = x_offset.cuda()
        y_offset = y_offset.cuda()
    
    x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0)
    
    prediction[:,:,:2] += x_y_offset
      
    #log space transform height and the width
    anchors = torch.FloatTensor(anchors)
    
    if CUDA:
        anchors = anchors.cuda()
    
    anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0)
    prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors

    #Softmax the class scores
    prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 + num_classes]))

    prediction[:,:,:4] *= stride
   
    
    return prediction

def write_results(prediction, confidence, num_classes, nms = True, nms_conf = 0.4):
    conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2)
    prediction = prediction*conf_mask
    

    try:
        ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).contiguous()
    except:
        return 0
    
    
    box_a = prediction.new(prediction.shape)
    box_a[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2)
    box_a[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2)
    box_a[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2) 
    box_a[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2)
    prediction[:,:,:4] = box_a[:,:,:4]
    

    
    batch_size = prediction.size(0)
    
    output = prediction.new(1, prediction.size(2) + 1)
    write = False


    for ind in range(batch_size):
        #select the image from the batch
        image_pred = prediction[ind]
        

        
        #Get the class having maximum score, and the index of that class
        #Get rid of num_classes softmax scores 
        #Add the class index and the class score of class having maximum score
        max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1)
        max_conf = max_conf.float().unsqueeze(1)
        max_conf_score = max_conf_score.float().unsqueeze(1)
        seq = (image_pred[:,:5], max_conf, max_conf_score)
        image_pred = torch.cat(seq, 1)
        

        
        #Get rid of the zero entries
        non_zero_ind =  (torch.nonzero(image_pred[:,4]))

        
        image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7)
        
        #Get the various classes detected in the image
        try:
            img_classes = unique(image_pred_[:,-1])
        except:
             continue
        #WE will do NMS classwise
        for cls in img_classes:
            #get the detections with one particular class
            cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1)
            class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze()
            

            image_pred_class = image_pred_[class_mask_ind].view(-1,7)

		
        
             #sort the detections such that the entry with the maximum objectness
             #confidence is at the top
            conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1]
            image_pred_class = image_pred_class[conf_sort_index]
            idx = image_pred_class.size(0)
            
            #if nms has to be done
            if nms:
                #For each detection
                for i in range(idx):
                    #Get the IOUs of all boxes that come after the one we are looking at 
                    #in the loop
                    try:
                        ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:])
                    except ValueError:
                        break
        
                    except IndexError:
                        break
                    
                    #Zero out all the detections that have IoU > treshhold
                    iou_mask = (ious < nms_conf).float().unsqueeze(1)
                    image_pred_class[i+1:] *= iou_mask       
                    
                    #Remove the non-zero entries
                    non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze()
                    image_pred_class = image_pred_class[non_zero_ind].view(-1,7)
                    
                    

            #Concatenate the batch_id of the image to the detection
            #this helps us identify which image does the detection correspond to 
            #We use a linear straucture to hold ALL the detections from the batch
            #the batch_dim is flattened
            #batch is identified by extra batch column
            
            
            batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind)
            seq = batch_ind, image_pred_class
            if not write:
                output = torch.cat(seq,1)
                write = True
            else:
                out = torch.cat(seq,1)
                output = torch.cat((output,out))
    
    try:
        return output
    except:
        return 0

def unique(tensor):
    tensor_np = tensor.cpu().numpy()
    unique_np = np.unique(tensor_np)
    unique_tensor = torch.from_numpy(unique_np)
    
    tensor_res = tensor.new(unique_tensor.shape)
    tensor_res.copy_(unique_tensor)
    return tensor_res

def load_classes_url(namesfile):
    fp = get_data_s3(namesfile)
    names = fp.getvalue().decode().split("\n")[:-1]
    return names


def load_classes(namesfile):
    fp = open(namesfile, "r")
    names = fp.read().split("\n")[:-1]
    return names

def bbox_iou(box1, box2):
    """
    Returns the IoU of two bounding boxes 
    
    
    """
    #Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3]
    b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3]
    
    #get the corrdinates of the intersection rectangle
    inter_rect_x1 =  torch.max(b1_x1, b2_x1)
    inter_rect_y1 =  torch.max(b1_y1, b2_y1)
    inter_rect_x2 =  torch.min(b1_x2, b2_x2)
    inter_rect_y2 =  torch.min(b1_y2, b2_y2)
    
    #Intersection area
    if torch.cuda.is_available():
            inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape).cuda())*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape).cuda())
    else:
            inter_area = torch.max(inter_rect_x2 - inter_rect_x1 + 1,torch.zeros(inter_rect_x2.shape))*torch.max(inter_rect_y2 - inter_rect_y1 + 1, torch.zeros(inter_rect_x2.shape))
    
    #Union Area
    b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1)
    b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1)
    
    iou = inter_area / (b1_area + b2_area - inter_area)
    
    return iou

def letterbox_image(img, inp_dim):
    '''resize image with unchanged aspect ratio using padding'''
    img_w, img_h = img.shape[1], img.shape[0]
    w, h = inp_dim
    new_w = int(img_w * min(w/img_w, h/img_h))
    new_h = int(img_h * min(w/img_w, h/img_h))
    resized_image = cv2.resize(img, (new_w,new_h), interpolation = cv2.INTER_CUBIC)
    
    canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)

    canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w,  :] = resized_image
    
    return canvas


def prep_image_org(orig_im, inp_dim):
    """
    Prepare image for inputting to the neural network. 
    
    Returns a Variable 
    """

    # orig_im = cv2.imread(img)
    dim = orig_im.shape[1], orig_im.shape[0]
    img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
    img_ = img[:,:,::-1].transpose((2,0,1)).copy()
    img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
    return img_, orig_im, dim



def prep_image(img, inp_dim):
    """
    Prepare image for inputting to the neural network. 
    
    Returns a Variable 
    """

    orig_im = cv2.imread(img)
    dim = orig_im.shape[1], orig_im.shape[0]
    img = (letterbox_image(orig_im, (inp_dim, inp_dim)))
    img_ = img[:,:,::-1].transpose((2,0,1)).copy()
    img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
    return img_, orig_im, dim